

nnState ege of Engineering AEROSPACE ENGINEERING

SMIC

AUTONOMOUS CONCENTRATED ENERGY SOLUTIONS (ACES)

COSMIC Capstone Challenge: Final Briefing

Students: Melik C. Demirel, Joseph W. Healy, Kiara N. Cornell, George S. Harmon, Denver Nazareth, Claire L. Shaw, Nick Cera Advisors: Dr. Sara Lego, Dr. Sharad Sharan (PSU) Mentor: Edward Tate (CTO, Virtus Solis Technologies)

16 April, 2025 The Pennsylvania State University - ACES Final Briefing - Watchdog Payload

Executive Summary

Watchdog Mission – Autonomous Concentrated Energy Solutions (ACES)

- Need: As humanity expands its presence in space, so will the quantity of debris in low Earth orbit (LEO). To promote spacecraft sustainability, debris must be removed.
- Capability: Long range energy transmission-a laser to push debris into suborbital trajectories
- Solution: A laser can ablate a small amount of mass from a debris particle, and the resultant momentum change can alter its trajectory
- Status: ACES has developed a hypothetical mission that could explore the proposed capability. If successfully demonstrated, this technology could drastically improve the lifespan of satellites in LEO.

Fengyun-1C Incident

Pulliam W., "Catcher's Mitt Final Report," Defense Advanced Research Projects Agency, retrieved 4 December 2024.

AEROSPACE ENGINEERING

Meet the Team

Kiara Cornell

Joe Healy

Melik Demirel

Nick Cera

George Harmon

Claire Shaw

Denver Nazareth

PennState College of Engi

eering ENGINEERIN

2.4 Systems Engineering Milestones

Milestones across 9 months of the project

Semester 1 – Initial Research and Concept Development

August 🝈	September	October	November	December 🕤
 Project Begins 	 Team organized <u>Project manager</u> <u>selected</u> Background ISAM research <u>Capability Chosen</u> 	 Project Scoping Functional Analysis <u>Top-Level</u> <u>Requirements</u> CONOPS Development 	 Trade studies for concept down select System Requirements Review (SRR) Subsystem requirements 	C3 Midpoint Showcase

Semester 2 – Subsystem Research, Design, and Analysis

January	February	March	April 🕬	
 Initial analysis plan developed Subsystem roles assigned 	 Subsystem desig work Concept further developed 	n · <u>Conceptual design</u> <u>finalized</u> • Midterm concept design review (CDR)	 C3 Competition Briefout <u>PDR Development</u> Final technical paper Design Showcase Poster Session 	

ACES - C3 Final Brief

PennState College of Engineering AEROSPACE ENGINEERING

Background Research

Watchdog

Need for debris mitigation – debris is expected to increase

Non-Mitigation Projection (averages and 1-σ from 100 MC runs) 70000 LEO (200-2000 km alt) of Objects (>10 cm) 60000 MEO (2000-35,586 km alt) GEO (35,586-35,986 km alt) 50000 Ave. collisions in the next 200 years (non-mitigation scenario) 40000 Total Cat Non-cat Effective Numb LEO 83 95 178 30000 MEO 0.5 1.5 2 GEO 1.5 1.5 3 20000 10000 1950 1970 1990 2010 2210 2030 2050 2070 2190 Year

To fulfill the ISAM goal of increasing the longevity of satellites, there needs to be a way to reduce space debris in LEO

100			Satellite / Constellation Type								
						(Covernment)	Medium	Large			
1					Small	(Government)	(Commercial)	(Commercial)			
ΝοΓ	obris	Mean Lifet	ime (years)			5.7	9	12			
	coris	Replenishn	nent Cost (\$Bi	llion)		20.1	16.9	7.9			
Fatal I	mnacts	Mean Lifet	ime (years) &		:	5.5 - 5.6	8.5 - 8.6	11.5 - 11.6			
	nlv	Percent Re	duction (2010	-2040)	2	.3 – 2.1%	5.0-4.6%	5.7 - 5.1%			
	iny	Replenishn	nent Cost (\$Bi	llion)	20.4	(2% increase)	17.7 (5% increase)	8.6 (8% increase)			
		Mean Lifet	ime (years) &			5.4 - 5.5	8.2 - 8.3	10.6 - 11.2			
All In	nnacts	Percent Re	duction (2010	-2040)	4	.4-3.4%	8.9-7.6%	13.1 - 8.3%			
	Renlevish		nent Cost (\$Bi	llion)	20.8 (4% increase)		18.4 (9% increase)	9.1 (15%			
		neprentisiti	ient cost (¢21		_0.0	(1/0111010480)	1011 (5 / 0 moreuse)	increase)			
Debris	Mass (g)	aluminum	Kinetic	Equiv. Th	NT	Similar in	Quantity	Currently			
Size	sphere		Energy (J)	(kg)		Energy to		Trackable?			
1 mm	0.0014		71	0.0003		Pitched baseball	Tens of millions	No			
3 mm	0.038		1910	0.008		Bullets	Millions	No			
1 cm	1.41		70700	0.3		Falling anvil	Hundreds of thousand	ds No			
5 cm	176.7		8840000	37		Hit by bus	Tens of thousands	Mostly not			
10 cm	1413.7		70700000	300		Large bomb	Tens of thousands	Mostly yes			
>10 cm	1400 - 5	00,000,000	< 10^13	< 3,000,00	00	Very large bomb	Thousands	Cataloged			

"Space Debris 101," Aerospace Corporation, 2024, retrieved 4 December 2024.

ACES - C3 Final Brief

AEROSPACE ENGINEERING

Background Research

Possible solution - lasers for microdebris removal

"Ground-Based Lasers Could Push Space Debris off Collision-Course Orbits," Universe Today, retrieved 4 December 2024. https://www.universetoday.co m/150896/ground-based-laserscould-push-space-debris-offcollision-course-orbits/

ACES - C3 Final Brief

Concentrated Solar Energy

Choi, S. H., Pappa, R. S., "Assessment Study of Small Size Space Debris Removal by Orbit-Stationed Laser Satellites", Recent Patents on Space Technology 2, pp. 116-122, 2012

- Research into methods for active debris removal
- Lasers can be used for long distance and high coverage

Mission Overview

Mission Statement and Operations

Mission

Watchdog

ACES - C3 Final Brief

Optical power transmission shall be used to satisfy the ISAM initiative for defense against micro debris particles in space.

1. Acquiring, tracking, and actively monitoring a debris target to redirect

2. Reorienting the optical transmission device, detectors, and the bus

3. Delivering Optical Power, move debris via ablation

peration

 \bigcirc

n**State** ge of Engineering

AEROSPACE ENGINEERING

3.1 Innovative Concepts

3 Main Concepts generated during CONOPS

- Initially, the plan was to use solar light to generate a laser, but this was changed in the final concept to an on-board laser
- The Solar Pumped Laser was chosen through trade studies
- 1. Unfolding Lens inspired by NASA Starshade
- 2. Flexible Gimballed Lens piezoelectric material
- 3. Solar Pumped Laser Nd:YAG used to generate beam

PennState College of Engineering

AEROSPACE ENGINEERING

Watchdog

ACES - C3 Final Brief

3.1 Innovative Concepts

Down select Trade Study

		10-11-14-04-5-14								
	Description			Concepts		Score	1	2	3	Units or Description
Category	Criteria	Weight	Unfolding Lens	Flexible Lens	Solar Pumped Laser	Max Estimated Power	< 30	30 - 50	> 50	Estimated output Power of Laser
Performance	Max Estimated Power Output	15%	3	1	3	Output		50 50	2 00	[KW]
Performance	Precision	20%	1	2	3	Precision	3	4	5	Degrees of Freedom
Performance	Scale	20%	1	2	2	Scale	≥ 8	5 – 8	< 5	Maximum Lens Diameter [ft]
Performance	Energy Input from Satellite	10%	3	2	1	Energy Required	$\geq 0.67 P_s$	$0.33P_s - 0.67P_s$	< 0.33 <i>P</i> _s	Fraction of satellite's producible power, $P_s = 444W$
Complexity	Moving Parts	10%	2	1	3	Moving Parts	> 4	2 - 4	< 2	Number of moving assemblies
Reliability	Lifespan	10%	2	1	2	Lifognon	< 20	20 40	 > 10	Europeted years of anoration
Risk	Technology Readiness (TRL)	10%	3	1	2	Lifespan	< 20	20 – 40	> 40	Expected years of operation
Cost	R&D Cost	5%	3	1	2	Technology Readiness (TRL)	1 – 3	4 - 6	7 – 9	TRL level of lowest TRL component
	TOTAL:	100%	2.00	1.50	2.35	R&D Cost	> 10	5 - 10	< 5	Cost in Millions of USD [\$M]

AEROSPACE ENGINEERING

2.2 Storyboard of Complete Operation

Macro-Level Mission Architecture

- Launch epoch: • 15 April 2025, 15:00:00 UTC
- The spacecraft performs each • stage autonomously
- Commands from the ground • station for guidance toward micro debris concentration
- The spacecraft will deorbit after 5 years of operation

Nominal Orbit P	arameters
Semimajor Axis	7228 km
Eccentricity	0
Argument of Perigee	0 deg
RAAN	260 deg
Inclination	28.5 deg
Orbital Period	102 minutes

AEROSPACE ennState

ENGINEERING

Watchdog

ACES - C3 Final Brief

2.2 Storyboard of Complete Operation (2)

Watchdog

Orbital Procedures

• Expanding on Step 5: Impulsive Hohmann transfers are used to move the spacecraft into "Waypoint" orbits where debris is most prevalent

Event	∆ <i>v</i> (m/s)
Estimated Rendezvous Δv (2x Hohmann Transfers)	200
4 Total Rendezvous:	800
Orbit Sustaining (5 years)	0.5
End of Life Deorbit	240
Attitude Adjustment (10% prop. Mass)	82
TOTAL:	1122
전 이의 방법은 제 경제에 있는 것은 것은 것은 것은 것은 것은 것을 위해 집에 있는 것은 것은 것은 것은 것은 것을 가지 않는 것을 가지 않는 것을 했다. 것은 것은 것은 것을 하는 것은 것은 것을	방법 그는 그는 것은

ACES - C3 Final Brief

AEROSPACE ENGINEERING

2.1 Animation of Key Operating Sequence

Functional steps of the payload

ACES - C3 Final Brief

PennState ollege of Engineering AEROSPACE ENGINEERING

2.1 Animation

ACES - C3 Final Brief

PennState College of Engineering AEROSPACE ENGINEERING

No.	Part Name	Description	#
		An aluminum 1060 container	
1	Payload Box	for the 17"x16.4"x27" payload	1
2	Boom Motor	Rotational motor for boom	1
3	Boom	Translatable extension	1
4	Cylindrical Lidar	Debris tracker	1
5	IR Camera	Camera for debris detection	1
	Superconductors Array		
6	w/ Thermal Shields	Power transmitter	1
7	Shock Absorbers	Force dampeners	2
8	CPU	Payload computer	1
9	Galvanometer	Laser positioner	1
10	Laser	Debris ablation tool	1
			A. Maria

	Payload Mass	Budget	
	Component	Mass (kg)	N. Carlo
	Laser	2.0	
	Tracking Sensors	30.0	
***	Power	1.0	
	Thermal	10.0	
	Structures	10.0	
	GNC+C&DH	1.5	
	20% Margin	54.5	
	Payload Total:	65.4	

ACES - C3 Final Brief

PennState College of Engineering

AEROSPACE ENGINEERING

Watchdog

♦CES

Selecting a Laser System

- Pulsed air-cooled
 Pulsed water-cooled
 CW air-cooled
 CW water-cooled
 max mass constraint
- max single-dimension constraint

More work needed for finding ideal laser wavelength and power

ACES - C3 Final Brief

PennState College of Engineering AEROSPACE ENGINEERING

Chosen Laser System

SPECIFICATIONS	FLARE NX 1030-1.0-2	FLARE NX 515-0.6-2	FLARE NX 343-0.2-2				
Wavelength (nm)	1030 ±1	515 ±0.5	343 ±0.5				
Pulse Energy ¹ (µJ)	>500	>300	>100				
Pulse Energy Variation ptp (%)		<±5					
Pulse Repetition Rate (Hz)		up to 2000					
Pulse Width (ns)	1.5 ±0.2	1.3 ±0.2	1.0 ±0.2				
Spatial Mode		TEM ₀₀					
M ² (Beam Quality)		<1.2					
Beam Waist Diameter at 1/e ² (µm)	490 ±35	360 ±35	300 ±30				
Beam Waist Location ² (mm)	140 ±15	200 ±30	190 ±30				
Beam Symmetry (%)	>90	>90	>85				
Static Alignment Tolerances Beam Position (mm) Beam Angle (mrad)		<±1 <±1					
Polarization		>100:1, vertical ±5°					
Warm-up Time to Stand By (s)		<150					
Base Plate Operating Temperature		15 to 35°C (59 to 95°F)					
Ambient Temperature Operating Storage		15 to 40°C (59 to 104°F) -20 to +50°C (-4 to 122°F)					
Laser Head Heat Dissipation ³ (W)		≤40					
Relative Humidity (%) (non-condensing)		≤80					
Dimensions (L x W x H) Laser Head Controller	155.6 x 160 x	93.5 x 38.25 mm (6.13 x 3.68 x 130 x 45 mm (6.3 x 5.12 x 1.	x 1.5 in.) 77 in.)				
Weight Laser Head Controller		~1.25 kg (2.75 lbs.) ~0.75 kg (1.65 lbs.)					
Controller Cable Length		1 m (3.28 ft.)					
Operating Voltage ⁴ (VDC)	24 ±2						

Bunaziv, I., Akselsen, O. M., Ren, X., Nyhus, B., and Eriksson, M., "Laser Beam and Laser-Arc Hybrid Welding of Aluminium Alloys," Metals, Vol. 11, No. 7, 2021, Article 1150. doi:10.3390/met11081150

ACES - C3 Final Brief

PennState College of Engineering AEROSPACE ENGINEERING

Selecting a Tracker System

Twin Fan Sweep LIDAR

Encounters Per Year by Effective Diameter On-Orbit @ 850km Altitude

Pulliam W., "Catcher's Mitt Final Report," Defense Advanced Research Projects Agency, retrieved 4 December 2024.

Average microdebris for the study is 10 cm and made of aluminum. The detector must be 10km-100km.

PennState College of Engineering AEROSPACE ENGINEERING

Watchdog

ACES - C3 Final Brief

Chosen Tracker System

IR Camera

Watchdog

Tracker Trade Study

	Criteria (Label)	T1	T2	T3	T4	T5 1	Г6 Т	7 T8	3 T9	T10	T11	T12 '	Г13	T14	T15	T16 '	T17 '	T18	Total						1 A	
	Weights	15%	10%	2% .	15%	5% 2	2% 1	% 5%	6 1%	5%	5%	5%	5%	10%	5%	5%	2%	2%	100%	Labe	l Score	1	2	3	Units	Description
	Doppler	3	2	2	2	2	3	3 3	2	3	2	3	2	2	3	3	2	2	81%	T1 T2	Range	< 10	10 - 50	> 50	km	- Emergine the data autout from the values
	Frequency Modulated Continuous	2	2	-	2	-		, . , .	-	2	-	2	-	-	2	2	-	-	0.404	T3	Precision Required Power	> 10 > 500	1 - 10 500 - 250	< 1 < 250	% Error W	Power required by device
	Wave (FMCW)	3	3	1	3	2	2 :	5 3	2	2	2	2	1	2	3	3	2	3	84%	T4	Detection Size	> 10	10 - 1	< 1	cm	Size of microdebris
	Flash	2	2	1	2	2	2 3	3 3	2	2	2	2	1	2	3	3	3	2	70%	T5	Average Size	> 4000	4000 - 100	< 100	in ³	Size of device
Lidar	Twin Fan Sween	3	3	1	3	2	2 3	3 3	2	2	2	2	1	3	3	3	2	2	86%	T6 T7	Average Mass	> 50	50 - 10	< 10	kg	Mass of device
	Multispectral	3	3	1	3	2	2 3	$\frac{3}{3}$	2	2	2	2	1	2	3	3	2	3	82%	17 T8	TRL	< 3	3 - 3 4 - 6	> 5	TRL	-
	Hunargnaatral	2	2	1	2	1	2	2 2	1	1	1	1	1	2	2	2	1	2	7404	T9	Cost	> 5	5-1	< 1	\$Million	-
	Polarmetric	2	2	2	2	2	2 2	3 3	2	2	2	2	2	$\frac{2}{2}$	3	3	2	2	74%	T10	Robustness	No	Moderately	Hardened	Radiation	How resilient is it to space weather?
	Phased Array	3	3	2	2	2	1 3	3 3	2	3	2	3	2	3	3	3	2	2	86%	T11	Data Rate	> 10	Hardened $1 - 10$	< 1	Gbps	Onboard processing / bandwidth needed
	Doppler	3	2	2	2	2	2 3	3 3	2	3	2	3	2	3	3	3	2	2	84%	T12	Duty Cycle	< 30	30 - 70	> 70	Percent	Continuous operation capability
	Sythestic Aperture (SAR)	3	2	2	$\frac{2}{2}$	$\frac{2}{2}$	2 2	3 3	2	3	$\frac{2}{2}$	3	$\frac{2}{2}$	2	3	3	1	3	80%	T13	Cooling	Active	Passive	None	Cooling	-
Radar	Lawanga Southatia Amantuna (ISAD)	2	2	2	2	2	2	, , , ,	2	2	2	2	2	2	2	2	1	2	8070	T14	Field of View	< 10	10 - 60	> 60	0	- Mana much halm da mana mard (ann it
	Deserve Synthetic Aperture (ISAR)	2	1	2	2 1	2 1	2 3		2	2	2	2	2	2	2	2	1	3	80% 65%	T15	Autonomy (Information	Computer	Filtering	Basic Math	_	not
	Passive	2	1	3	1	1	1 .	5 <u>2</u>	3	2	3	2	3	3	3	2	2	1	03%	110	processing)	Vision	Processing	Dusie Main		Does it need AI?
	BiStatic/Multistatic	3	2	2	2	2	2 :	3 3	2	3	2	3	2	3	3	3	2	2	84%		I ou light					Low = Requires direct illumination,
Infrared	Shortwave Infrared (SWIR)	2	2	2	2	2	2 3	3 3	2	2	2	2	2	2	2	2	2	2	69%	T16	nerformance	Low	Medium	High	Performance	Medium = Limited low-light capability,
Comoro	Midwave Infrared (MWIR)	2	2	1	2	2	2 3	3 3	2	2	2	2	1	2	2	2	2	2	66%		penjormanee					High = Fully functional in total darkness
Camera	Longwave Infrared (LWIR)	2	2	1	2	2	2 3	3 3	2	2	2	2	1	2	2	2	2	2	66%	T17	Frame rate	< 1	1 - 10	> 10	FPS	what is the rate at which it checks for change?
Other	Passive / Visible Optical	2	2	2	2	2	2 3	3 3	2	2	2	2	3	2	1	1	2	1	66%		Amount of					1 = position: 2 = position + velocity: 3 =
Camera	Polarimetric	2	2	2	2	2	2 3	3 3	2	2	2	2	2	2	1	1	2	2	65%	T18	information	1	2	≥ 3	Sets	position + velocity + thermal; etc.
Camera	Stereoscopic	2	2	2	2	2	2 3	3 3	2	2	2	2	3	2	2	1	2	2	69%	15	еличиев					

ACES - C3 Final Brief

PennState College of Engineering

AEROSPACE ENGINEERING

Thermal System (1)

0

- Eclipse times used to determine time spent in sun and heat generation from the sun. The power used in the payload determines the internal heat generation
 - Total heat into the system = Sun + Internal = 122.5 W + 230.5 W = 353W
- One side of the payload is completely open to radiate to space (.18 square meters) with louvers on two of the other side (.6 square meters). Combined radiating area of .78 square meters
- *This* radiating of heat combined with the incoming heat load from the sun results in an equilibrium temperature of the system to come out to 38.1 Celsius (311.3 K, where the blue curve intersects the red line in the bottom graph)
 - In order to get the operating temperature a more ideal 20 Celsius, about 75.4 Watts needs to be dedicated to active cooling

1State e of Engineering AEROSPACE ENGINEERING

*CES

Watchdog

Payload Overview

Thermal System (2)

- Next was to worry about thermal loading in eclipse.
- The payload isn't operating during eclipse, so the only internal heating would come from active heating.
- The equilibrium temperature before active heating was found to be roughly –73 Celsius meaning active heating is needed
- The target temperature was set to be 15 Celsius (288.15 K) in the Stefan-Boltzmann Law to find a heating power of 59.81 Watts required
- This is the only power being drawn to the payload at this time leaving plenty of energy to be used for heating, comms, propulsion, etc. for the satellite
- The graph shows where our emission curve intersects the heating power to show the heating power needed for the desired temp

AEROSPACE ENGINEERING

ACES - C3 Final Brief

Payload Overview

Power System

- A company called Eaglepicher Technologies makes the chosen space-rated Li-ion battery. 8 of these are used in one battery module to get the following specs:
- This battery module is stored on the bus and charges 12 supercapacitors
- The supercapacitors are configured in a such a way to get the following specs:
- Using a DC-DC boost converter accounting for thermal losses and inefficiencies, allows the battery module to charge the supercapacitors in around 20 minutes.
- The laser is then fired using the supercapacitors and another boost converter.
- All of these values were found using general equations for batteries and capacitors in parallel/series

Only the laser draws power from the supercapacitors

Battery Module								
Parameter	Value							
Capacity	288 Ah							
Energy	2073.6 Wh							
Voltage	7.2 V							
Weight	16.792 kg							
Charge Current Limit	144 A							
Discharge Current Limit	288 A							
Operating Temp. Range	10°C to 30°C							
Storage Temp. Range	-5°C to 5°C							

Supercapacitors										
Parameter	Value									
Capacitance	133.33 F									
Voltage	9 V									
Energy	1.5 Wh, 5400 J									
Operating Temp. Range	-40°C to 65°C									

Power System (2)

- The laser can activate for around 60 seconds of continuous fire before supercapacitors need recharged
- LIDAR
 - requires 1000 Watts
 - activated for one hour at a time to ensure sufficient debris tracking,
 - 1111.1 Wh to achieve this
- Infrared camera
 - Active while the lidar is active
 - Requires 25 Watts
 - 25 Wh to achieve this
- Galvo box and boom motors power use is negligible
- Most of the satellite's subsystems are inactive during payload operation, so 40% power is enough to power the bus payload activation occurs

Watchdog

AEROSPACE ENGINEERING

Physical Simulation - Methodology

• The model combines analytical and numerical propagations to simulate the effect of micro-debris ablation

ACES - C3 Final Brief

PennState College of Engineering AEROSPACE ENGINEERING

Physical Simulation – MATLAB Simulation

• The model combines analytical and numerical propagations to simulate the effect of micro-debris ablation

Simulation uses 3mg/100J ablation rate, 100g initial debris mass, average laser power of 1.3kW, 40 second encounter

ACES - C3 Final Brief

PennState College of Engineering AEROSPACE ENGINEERING

1.5 Risks

Three Most Prominent Risks with Watchdog

Dick	Pro-Mitigation	Post-Mitigation		RISK ASSE	SSMENT MAT	RIX	
1. Lasering a non-debris target	Without sufficient checking,	Inclusion of an IR camera	Severity/Probability	Catastrophic (1)	Critical (2)	Marginal (3)	Negligible (4)
	the payload could laser objects that are not debris (C1)	capable of distinguishing between debris and other objects (D4)	Frequent (A)				
2. Pushing debris onto trajectories other than sub- orbital	 If the laser were to ablate any particle found, it may push it in a direction that does not assist in deorbiting (B3) 	 Tracking system must verify the trajectory of the target before lasering to ensure it will move against its velocity (D3) 	Probable (B)			2.	
3. Regulatory risk with high- powered lasers in space	 Some parties may not be comfortable with a debris- clearing satellite near operational satellites (C2) 	 Communicate with satellite hosts operating near Watchdog to ensure there are no conflictions (C4) 	Occasional (C)	1.	3. –		→ 3.
			Remote (D)			2.	→ 1.
			Improbable (E)				

ACES - C3 Final Brief

PennState College of Engineering

AEROSPACE ENGINEERING

1.5 Risks (and Costs)

Costs analyzed using Aerospace Corp. SSCM19 Software – Base Cost Breakdown

- Most of the technologies (Laser, Tracker, Thermal) are low TRL (likely 3-4)
- This mission may require preceding ones to demonstrate in-space operation of these technologies
- To account for the low TRL in the project, the cost estimation factors in greater cost distributions
 - +100%, -0% for C&DH, Thermal, and Power, to account for possible developments necessary for these subsystems
 - Methodology is that TRL needs to nearly double for technology in these subsystems, hence the cost may be double.
- Most likely cost of \$51,683K
- Mean cost of \$60,378K

	Percentages		Distr	Distribution Points			Estimate (FY25\$K)		
	Low	High	Low	Most Likely	High	Mean	Std Dev		
Spacecraft Bus Subsystems									
Power	0%	100%	5,456	5,456	10,912	7,274	3,016		
Structure			4,135	4,135	4,135	4,135	1,848		
ADCS	0%	100%	4,201	4,201	8,402	5,601	2,231		
Propulsion			2,089	2,089	2,089	2,089	932		
TT&C/C&DH	0%	100%	14,194	14,194	28,387	18,925	7,505		
Thermal	0%	100%	2,235	2,235	4,469	2,980	1,405		
Spacecraft Bus			32,309	32,309	58,394	41,004	11,633		
ATLO			9,920	9,920	9,920	9,920	4,087		
PM/SE			9,454	9,454	9,454	9,454	5,077		
S/C Development & First Unit			51,683	51,683	77,769	60,378	13,840		

Note: Factoring in overhead for bus systems unit cost

Watchdog

ACES - C3 Final Brief

2.3 Data Handling and Comms

Ground Stations

- The Space Fence radar, located in the Marshall Islands will be used for debris detection
 - This will guide the spacecraft towards orbits where debris are most likely
 - NOT used for communications
- Ground Stations:
 - Malabar Transmitter Annex (Cape Canaveral)
 - Awarua Ground Station (New Zealand)
 - Two stations located near the highest latitudinal inclination of the orbit, which allows for multiple accesses each day.
 - Both work in S-band transmission, inclination allows for access about 12 times per day, average access of about 12 minutes

ENGINEERING

2.3 Data Handling and Comms (2)

Downlink and Uplink Budgets

*CES

- The communications subsystem is sized to use a standard all-metal patch antenna, used on the S-band frequency, provided by Blue Canyon Technologies
- An uplink and downlink budget was developed, which defines link margins expected for the given setup
- Analysis using access times generated in STK
 - For an upper-bound estimation of data transmitted on a single pass to be 100MB, the data rate is 12.1 Mbps

Downlink Budget				Uplink Budget			
	Frequency	2.50	GHz		Frequency	2.65	GHz
	Antenna Power (W)	7000	mW		Antenna Power (W)	500	W
ļ	Diameter	0.0838	m	1	Diameter	, 11	m
Francomittar (BC S-Band	Pointing Error	140	deg	1	Pointing Error	0.07	deg
I ransmitter (BC S-Band All Metal Patch Antenna)	Antenna Power (dB)	8.45	dBW	Transmitter (NZ Station)	Antenna Power (dB)	27.0	dBW
	Line Loss	-1.0	dB	1	Line Loss	-1.0	dB
ļ	Peak Gain	4.3	dB	1	Peak Gain	47.1	dB
ļ	Pointing Loss	-23.4	dB	1	Pointing Loss	-0.1	dB
ļ	Transmit Gain	-19.1	dB	1	Transmit Gain	47.0	dB
	Net Gain	-11.7	dB	[]	Net Gain	73.0	dB
	Diameter	11	m		Diameter	0.0838	m
	Pointing Error	0.07	deg	Deseiver (DC & Dand All	Pointing Error	140	deg
Reciever (NZ Station)	Peak Gain	46.6	dB	Receiver (BC S-Band All	Peak Gain	4.74	dB
ļ	Pointing Loss	-0.1	dB	Metal Paten Antenna)	Pointing Loss	-26.3	dB
ļ	Net Gain	46.5	dB	1	Net Gain	-21.6	dB
	Path Length (max)	1000	km		Path Length (max)	1000	km
ļ	Space Loss	-160.4	dB	1	Space Loss	-160.9	dB
ļ	Bit Error Rate	1.0E-05	ļ	1	Bit Error Rate	1.0E-05	ļ
	Modulation	BPSK, R-1/2 Viterbi			Modulation	BPSK, R-1/2 Viterbi	
Other	E_b/N_0 Reqd.	10.9	dB	Other	E_b/N_0 Reqd.	4.5	dB
Other	Imp. Loss	-2.0	dB	Other	Imp. Loss	-2.0	dB
	Prop./Polarization Loss	-0.03	dB		Prop./Polarization Loss	-0.03	dB
	Data Rate	12.1	Mbp s		Data Rate	120	kbps
	Noise Temp.	135		<u> </u>	Noise Temp.	135	
			_	1			_
	Downlink Margin:	4.4	dB ¹	1	Uplink Margin:	40.5	dB '

Watchdog

ACES - C3 Final Brief

2.3 Data Handling and Comms (3)

Flow of Data Illustrated

Watchdog

Payload C&DH

Bus C&DH

ACES - C3 Final Brief

PennState College of Engineering

AEROSPACE ENGINEERING

3.3 Biggest Challenges Encountered

Three challenges and their approach

- 1. Technical challenge proving that debris could be pushed into desired trajectories
 - The orbital MATLAB simulation was developed to show the effect of an encounter with debris
- 2. Technical challenge developing a laser system that could be pumped by solar light
 - Eventually, this idea was avoided to avoid complexity and feasibility risks
 - This has challenges both in materials and logistical implementation
- 3. Technical challenge of modeling ablation for the desired particle
 - A paper was found that discusses using lasers to redirect debris. We used this data to have an ablation rate that was approximately proportional to the laser power.
 - Still unknown how wavelengths and pulse frequency will affect this rate

Kurzweg, U.H., "Analysis of a 10 Megawatt Space-Based Solar-Pumped Liquid Neodymium Laser System," NASA CR 3774 c.1 Grant NAGI-135, January 1984, retrieved 4 December 2024. https://ntrs.nasa.gov/api/citations/19840008476/downloads/19840008476.pdf

Choi, S. H., Pappa, R. S., "Assessment Study of Small Size Space Debris Removal by Orbit-Stationed Laser Satellites", Recent Patents on Space Technology 2, pp. 116-122, 2012

eering ENGINEERING

Watchdog

ACES - C3 Final Brief

Laser System The laser used for this mission must support output power on

Greatest Tech Gaps within the Payload

- The laser used for this mission must support output power on the scale of kilowatts
- Some systems exist, but require large mass and volume, as well as cooling

3.2 Technology Gap Assessment

- While the team envisioned designing a laser for the mission, this proved to be too involved for this project
- Target Tracker
 - It was found that LIDAR would be the most suitable for this system
 - The mission would only be feasible if the tracker were accurate to several kilometers
 - Additionally, the power for this is not certain, and may not be feasible for a small sat
- Laser Thermal Management
 - Most thermal systems for a laser would include a pumped system transporting a coolant, which can be large
 - Cooling such as this has not been demonstrated in space

AEROSPACE ENGINEERING

Watchdog

ACES - C3 Final Brief

4.1 Paper

CES

AIAA paper detailing design and analysis work

A 20-page paper has been prepared detailing the design and analysis work performed on this project

5		
	%=	
	\mathbb{N}	

The paper is in AIAA formatting, and is intended to be submitted to the SciTech conference (Orlando, Jan 2026)

Alternatively, IEEE Aerospace Conference, SmallSat Conference, and AAS/AIAA Astrodynamics Specialist Conference are being considered

Abstract is 195 words, there are 15 references

AEROSPACE ENGINEERING

1.6 Path to PDR

Venus X-Class Bus Integration Work

- So far, there is design verification for:
 - Propulsion, Power, and Thermal systems
- The next steps would include:
 - Determining detailed mass/inertia information about the bus to develop GNC models
 - Further develop C&DH systems to determine the size and processing power needed for on-board computers
 - Perform more in-depth studies of the physical characteristics of the spacecraft, such as structural and environmental loads during launch and operation

ACES - C3 Final Brief

ennState ollege of Engineering AEROSPACE ENGINEERING

1.6 Path to PDR

Next steps for the payload design and integration

*CES

Build up the astrodynamics models to find optimal power and forces necessary to redirect debris

Experiment with laser ablation, develop ablation simulations that align close to reality

Design or select a laser capable of delivering optimal power at a specified wavelength/frequency

In-Space/Lab demo of some key technologies (Laser, Tracker) to raise TRL

ACES - C3 Final Brief

PennState College of Engineering AEROSPACE ENGINEERING

Lessons Learned

Three important takeaways from the project

01

Take the technological fidelity of your ideas into account at the earliest phase of conceptualization

- The team realized later in development that some of the concepts were not highly demonstrated
- There were considerations of swapping to a technical demonstration to raise TRL, but decided not to move forward

02

Be sure to balance workload and time

- Be careful becoming too focused on one item or task
- Take care not to over-scope

03

Be sure to do "back of the envelope" calculations as early as possible

- Use physical principals and models available to back up early concepts
- May help to play devil's advocate in early discussion

AEROSPACE ENGINEERING

Conclusion

Impact to ISAM and Innovation

- Raise awareness for the microdebris problem •
- Call to action for research on lasers and debris tracking technology

Innovation

Impact

- The Watchdog mission aims to clear a large quantity of debris from long range
 - While some systems clear few large debris targets, Watchdog aims to clear many small ones

ENGINEERING

Questions?

Backup Slides

ACES - C3 Final Brief

PennState College of Engineering AEROSPACE ENGINEERING

1.6 Risk (and Costs)

SSCM19 Cost Breakdown by Subsystem and Sublevel

		Estima	te (FY25\$K)		% of	% of
	Non-Rec	Rec	Total	Std Error	Sub-level	Sys-level
Spacecraft Bus Subsystems						
Power	2,151	3,305	5,456	2,046	16.9%	
Structure	2,155	1,980	4,135	1,848	12.8%	
ADCS	2,000	2,201	4,201	1,500	13.0%	
Propulsion	712	1,377	2,089	932	6.5%	
TT&C*	2,300	2,255	4,554	5,039	14.1%	
C&DH*	4,867	4,772	9,639		29.8%	
Thermal	1,161	1,073	2,235	977	6.9%	1
Spacecraft Bus	15,346	16,963	32,309	6,088	100%	62.5%
IA&T*	3,311	3,881	7,192	4,087		13.9%
PM/SE	4,288	5,166	9,454	5,077		18.3%
LOOS*	0	2,728	2,728			5.3%
S/C Development & First Unit	22,945	28,738	51,683	8,919		100%

PennState College of Engineering AEROSPACE ENGINEERING

Trade Studies

Launch Vehicle

Launch Vehicles	Weight	Goal	Falcon 9	Atlas V	Ariane 5	Minotaur IV
Payload Mass to LEO	5	Max	50,265	41,560	10,000	3,825
Normalized Value			1	1	0.133	0
Reliability	45	Max	4.985	5	4.79	5
Normalized Value			0.929	1	0	1
Fairing Volume	5	Мах	257.2	520.4	396.5	27.5
Normalized Value			0.466	1	0.749	0
Estimated Cost	45	Min	62	153	175	46
Normalized Value			0.876	0.171	0	1
Totals:	100		0.885	0.617	0.044	0.90

PennState College of Engineering

AEROSPACE ENGINEERING

Other

	CE	s	Λ	
		7		,
	\leq			
		7		
		_		

Description	$\Delta v (m/s)$
Impulse 1 (Xfer)	39
Impulse 2 (circularize)	39
Hohmann Xfer (to 700km)	78
Impulse 3 (Xfer)	57
Impulse 4 (Circularize)	58
Hohmann Xfer (to Waypoint)	115
TOTAL TRANSFER:	193

Access Parameters	Approx. Data Per Pass Approx. Access Time Estimated Initialize Time	100 12.5 2	MB minutes minutes
Observation	η_{max} λ_{max}	58.5 16.5	deg deg
Parameters	λ_{min} (est) F	15 0.43	deg
	ρ Μ	1.08 3	
	Est. Data Rate	12.05	Mbps

ACES - C3 Final Brief

PennState College of Engineering AEROSPACE ENGINEERING

ACES - C3 Final Brief

PennState College of Engineering AEROSPACE ENGINEERING

ACES - C3 Final Brief

PennState College of Engineering AEROSPACE ENGINEERING

Laser System

"FLARE NX", Coherent Corp.

Pulliam W., "Catcher's Mitt Final Report," Defense Advanced Research Projects Agency, retrieved 4 December 2024.

Bunaziv, I., Akselsen, O. M., Ren, X., Nyhus, B., and Eriksson, M., "Laser Beam and Laser-Arc Hybrid Welding of Aluminium Alloys," Metals, Vol. 11, No. 7, 2021, Article 1150. doi:10.3390/met11081150

PennState College of Engineering

AEROSPACE ENGINEERING

"FLARE NX", Coherent Corp.

SPECIFICATIONS	FLARE NX	FLARE NX				
	1030-1.0-2	515-0.6-2	343-0.2-2			
Wavelength (nm)	1030 ±1	515 ±0.5	343 ±0.5			
Pulse Energy ¹ (μJ)	>500	>300	>100			
Pulse Energy Variation ptp (%)		<±5				
Pulse Repetition Rate (Hz)	up to 2000					
Pulse Width (ns)	1.5 ±0.2	1.3 ±0.2	1.0 ±0.2			
Spatial Mode		TEM ₀₀				
M ² (Beam Quality)		<1.2				
Beam Waist Diameter at 1/e ² (µm)	490 ±35	360 ±35	300 ±30			
Beam Waist Location ² (mm)	140 ±15	200 ±30	190 ±30			
Beam Symmetry (%)	>90	>90	>85			
Static Alignment Tolerances Beam Position (mm) Beam Angle (mrad)	<±1 <±1					
Polarization	>100:1, vertical ±5°					
Warm-up Time to Stand By (s)	<150					
Base Plate Operating Temperature	15 to 35°C (59 to 95°F)					
Ambient Temperature Operating Storage	15 to 40°C (59 to 104°F) -20 to +50°C (-4 to 122°F)					
Laser Head Heat Dissipation ³ (W)		≤40				
Relative Humidity (%) (non-condensing)		≤80				
Dimensions (L x W x H) Laser Head Controller	155.6 x 93.5 x 38.25 mm (6.13 x 3.68 x 1.5 in.) 160 x 130 x 45 mm (6.3 x 5.12 x 1.77 in.)					
Weight Laser Head Controller	~1.25 kg (2.75 lbs.) ~0.75 kg (1.65 lbs.)					
Controller Cable Length	1 m (3.28 ft.)					
Operating Voltage ⁴ (VDC)	24 ±2					
Laser Control Electronics	Digital, OEM ⁴					
Communication Interface		RS-232				

Pulse energy at 2000 Hz, maximum decrease over warranty period <10%.

2 The beam waist location is inside the laser head. Reference surface is the output window.

Baseplate temperature 30°C.
 Power supply not included, PC required.

ACES - C3 Final Brief

AEROSPACE ENGINEERING

