Project Daedalus Team H.A.D.E.S.

4/16/2025

Tejas Vinod, Erika Ashley, Seokhyeon Byun, Julian Drake, Dora Erdogan, Timothy M^cEvoy, Steven Meadows, Jay Sabharwal, Larsen Van Offeren, David Ward

LLEGE OF ENGINEERING EVIN T. CROFTON DEPARTMENT OF EROSPACE AND OCEAN ENGINEERING IRGINIA TECH

Executive Summary

- Team H.A.D.E.S. has developed a system within the ISAM domain focusing on structural manufacturing and assembly
- This project will use Directed Acoustic Energy Deposition (DAED), a novel low-power additive manufacturing method, to fabricate aluminum structures in LEO and subsequently assemble them using a laser-based weld system
- The payload demonstrates integration of advanced manufacturing processes, novel assembly methods, and AI-powered defect detection, all within the restrictions of the Blue Canyon Technologies' (BCT) Venus-Class Bus

Team H.A.D.E.S

Team Organization Chart Project Manager

BCT Venus-Class Bus

Specification	Value
Bus Class	ESPA Standard
Pointing Accuracy	±0.002°
Slew Rate	> 1.5°/s
Solar Array Power	444 W
Orbit Average Payload Power	60 W
Energy Storage	13.6 Ah
Payload Volume	17.0"x16.4"x27.0"
Orbit Lifetime	> 5 years in LEO
Bus Dry Mass (Without Payload)	64 kg
Max Payload Mass	78 kg
Science Data Downlink	S-Band (<2 Mbps)
Propellant Capacity	10 kg
Max delta V	50 m/s
	[1,2]

COLLEGE OF ENGINEERING FTON DEPARTMENT OF **AEROSPACE AND OCEAN ENGINEERING VIRGINIA TECH**

Team H.A.D.E.S.

Considered Concepts

- 1. Reusing Earth's polymer waste for space 3D printing
- 2. Space coating for repair & atomic oxygen resistance hardening
- 3. Traditional East Asian architectural joint for space structures

Traditional East Asian joint method. Traditional East Asian joint assembly was considered for in-space structural assembly early in concept development. It was not pursued due to the precision required to join the pieces together [3,4].

6/2025

Project Daedalus Final Selection

In-Space Additive Manufacturing

In-Space Additive Manufacturing Experiments. These test samples were manufactured on the ISS with the Made In Space polymer 3D printer (left) and the Airbus LDED additive manufacturing system (right) [5,6].

Impact

- The goal is to successfully print 3D printed cylindrical beams and prove the concept of assembly in space
- Structures optimized for space rather than launch
- Supports new or improved types of spacecraft
 - Enables on-demand part production
- Allows for more efficient repair of existing satellites
 - Spacecraft components can be replaced
 - Increases the satellite lifespan
- Prove new technologies in space

Concept of In-Space Structural Fabrication. Demonstrating the ability to fabricate and assemble structures in space would enable future missions to manufacture large structures without the restrictions launch puts on modern space vehicles. This concept art was developed by Made in Space [7].

Team H.A.D.E.

D.E.S.

MISSION DAEDALUS CONCEPT OF OPERATIONS

Laser welding assembly of two cylinders

Assembly extruded through top of chassis

Printing area reset; steps 3-6 performed for each stretch goal:

- 6"x1" Cylindrical
 Print
 - Increased Thickness Cylindrical Print
 - Square Structure

400-600 km LEO

Initialize System: Move out of launch configuration, downlink status to Ground Station

2

Initialize Print: Print head moved to print bed Metal DAED printing operation

Λ

Print Verification Downlinked to Ground Station

5

Assembly Method Performed

Legend

Deorbit Burn

2032

S-Band link, Full Duplex

S-Band Satellite Dish, KSAT network

COLLEGE OF ENGINEERING KEVIN T. CROFTON DEPARTMENT OF AEROSPACE AND OCEAN ENGINEERING VIRGINIA TECH

Additive Manufacturing

0.06

0.06

Compared four AM Laser Directed Energy **Electron Beam Directed Directed Acoustic Material Extrusion** technologies in a trade Deposition **Energy Deposition Energy Deposition** study High power High power **Directed Acoustic Energy** Low power Low power • Deposition was found to be optimal for the Fast deposition Highly experimental Good resolution Fast deposition mission Active on-orbit use Active on-orbit use Radiation concerns Not microgravity tested **Power Required** System Volume System Mass **Research Value** Sources (W) (m³) (kg) Minimize Maximize **Results** Weights 0.331 0.167 0.148 0.354 DAED 100 - 3000.05 20 0.36 3 [8-16] 150 - 200MEX 0.05 17 0.29 [8-12,17-20] 1

8

40

40

500 - 600

750 - 900

EDED

LDED

2

1

[8-12, 20-22]

[8-12, 22-24]

0.21

0.14

DAED Printing

- Experimental additive manufacturing technology
- Acoustically soften feedstock material during compression
- Deposit voxels layer by layer

System Parameters			
Operating Power	100 W		
Mass Estimate	10.8 kg		
Build Volume	375 cm ²		

Mission Success Criteria

10

Team H.A.D.E.S

Payload Overview

Key Components

- 1. Al 6061 feedstock spool
- 2. Wire Feeder
- 3. Deposition head
- 4. Rotational traversal system
- 5. Consumable substrates

Not Pictured

- Print graveyard
- Prefabricated samples to enable assembly should deposition fail

 <u>Initialize System</u>
 Move from launch configuration.
 1b. Subsystem checks performed; system diagnostics downlinked to ground station.

2 <u>Filament Preparation</u> Filament is directed into feed tube for plasticization. Substrate is heated to 121° Celsius.

3 <u>Place Filament</u> 3a. Filament is plasticized by 60 kHz transducer. Voxel of filament is deposited and compressed 3b. Nozzle returns to initial position

4 <u>Spin Print Bed</u> Operations 3a and 3b are continued while the print bed spins for each layer of filament building a cylinder.

5 <u>Finish Print</u> Print head is returned to original position. Print quality is analyzed and downlinked to ground station.

6 Initialize Print Assembly 6a. Finish print is maneuvered and 6b. secured to assembly position. Operations 2-5 repeated for next print.

7 <u>Laser Weld</u> Next print is maneuvered and secured to assembly position. Laser is powered to weld the seam between the prints.

8 <u>Finish Assembly</u> Assembled prints are moved and secured upwards out of the chassis Operations 2-7 repeated until mission criterion satisfied.

FTON DEPARTMENT OF

ACE AND OCEAN ENGINEERING

System Block Diagram

COLLEGE OF ENGINEERING

VIRGINIA TECH

KEVIN T. CROFTON DEPARTMENT OF

AEROSPACE AND OCEAN ENGINEERING

Team H.A.D.E.S.

Additive Manufacturing System

- Resistive heater embedded in substrate
- 28-gauge aluminum feedstock
 - Feedstock motor: Xeryon XRT-U-25 [26]
- P885.11 Piezoelectric Transducer at 60 kHz [25]
- 891 Wh (82% Battery) per inch printing
 - 5.17 hours of printing required
- Maximum print volume

4/16/2025

• 7.0"x2.0"x2.0"

Assembly System

- Modified YLM-150/1500-QCW Fiber Laser
 [27]
 - 450 W average power
- LDW100 MINNI Robotic Wobble Head [28]
- 3.14" weld circumference
 - Weld time estimate: < 2 min
 - Energy for single weld: 99 Wh (~9% Battery)

Non-Destructive Evaluation System

- Printing Monitoring:
 - Detects surface-level defects via transfer learning . with (CNNs) using optical camera data [29]
- Assembly Monitoring:
 - Short-range inspection of thermal anomalies using IR camera [30]

- NVIDIA Jetson Xavier NX
 - Al computer, 21 TOPs, 16GB [31]

Optical camera (Arducam IMX219)

- 3280x2464 resolution, 1.0 W, MIPI compatible, 3" focal range [32]
- IR camera (FLIR Boson+)
 - 320x256 resolution, 0.3–0.5 mils wavelength, 0.5 W, optimized for 2"–8" range [33]

Failed Print System

- Based loosely on the Hepcomotion DTS Track System [34]
 - 8 storage slots
 - 2 slots pre-filled with prints
 - Allows for assembly to be proven if printing fails
 - Run by Xeryon XRT-A-30-X motor [35]

DLLEGE OF ENGINEERING EVIN T. CROFTON DEPARTMENT OF EROSPACE AND OCEAN ENGINEERING TRGINIA TECH.

Command & Data Handling ConOps

KEVIN T. CROFTON DEPARTMENT OF

VIRGINIA TECH

AEROSPACE AND OCEAN ENGINEERING

Power Considerations

DEPARTMENT OF

AND OCEAN ENGINEERING

VIRGINIA TECH

Power Draw by Power Mode

Subsystem	ldle (W)	Print Initialize (W)	Printing (W)	Assembly (W)
Assembly Bed	0	0	0	1
Avionics	4	13	50	27
Deposition Mechanism	0	74	32	0
Filament Handling	0	6	32	0
Health Monitoring	7	7	7	7
Laser System	0	0	0	810
Power Control	5	5	5	5
Rotating Bed	0	9	43	37
Thermal Control	4	4	4	4
Total	20	117	172	891

Predicted Power Timeline for a 3 Inch Print. The power draw of the fabrication subsystem during a print cycles between a charging phase up to 28.64 Ah (80%) battery storage followed by a discharge down to 7.75 Ah (20%) battery storage during voxel deposition. Ridges in the charge cycle are caused by eclipsing from the Earth. The time to print a 3" tall cylinder is estimated to be approximately 107 hours (70 orbits), with the first 24 hours allocated for idle charging.

Team H.A.D.E.S.

20

Thermal Summary

Passive Cooling System

- 12 Wall-mounted Sierra Space Miniature Satellite Energy Regulating Radiators (MiSER) [36]
- 8.5 x 8.5 inch dimension
- ~12 W dissipation per panel
- >100,000 cycle lifetime
- Heat pipes from components

Active Cooling System

- Novec 7000 Engineering Fluid [37]
- TCS M510 micro-pump [38]
- Ultrasonic Additively Manufactured (UAM) radiator [39]
 - Embedded fluid paths
- Components requiring active cooling:
 - (x2) NVIDIA Jetson Xavier NX
 - Laser Chassis

21

/16/2025

Launch Considerations

- SpaceX Bandwagon launch (full plate config) for \$1.3M [40]
- The payload system structure was designed to be endure launch loads including vibration and acceleration loads.
- Our chassis structural stability analysis was conducted with Ansys Mechanical FEA (random vibe and acceleration Gloading), and G-loading results were verified using direct stiffness method hand calculations [41].

4/16/2025

22

Team H.A.D.E.S

Cost Estimation

Overall Mission Cost Estimate [42]

	Non-Recurring (\$K)	Recurring Production (\$K)	Total Cost (\$K)
Project Management	800	1,900	2,700
Safety/Mission Assurance	1,200	1,700	2,900
Science/ Technology	200	300	500
Payload	200	600	800
Flight Systems	3,200	8,300	11,500
Spacecraft Bus	20,000	0	20,000
Flight System I&T	800	2,300	3,100
Launch Vehicle	1,300	0	1,300
System Integration	400	1,100	1,500
Total Project Cost	30,000	20,400	50,400

Basic Cost Subsystem Total Cost (\$K) GA (%) (\$K) Chassis 6.3 5.3 10 **Deposition Mechanism** 14.1 5-20 15.2 **Filament Handling** 0.6 15 0.7 5-20 **Rotating Bed** 12.3 13.0 Laser Assembly 16.0 5-30 19.1 Assembly Mechanism 6.5 5-25 6.9 **Avionics** 301.5 346.7 15 Health Monitoring 20 29.6 24.6 9.3 Substrate 8.5 10 Thermal Control System 100.5 15 115.6 Power Management 141.5 130.0 5-15 Electrical 7.5 45 10.9 **Total Payload Cost** 627.4 715.0

Payload Material Cost Estimate (Per Unit)

23

Mass Budget

Subsystem		Total Basic Mass (kg)	G Allov	irowth wance (%)	Total System Mass (kg)	
Chassis		14.7		10-30	16.9	
Deposition Mechanism		4.4		5-20	8.5	
ilament Handling		0.8		15	0.9	
Rotating Bed		2.9		5-20	3.1	
aser Assembly		11.8		5-20	13.9	
Assembly Mechanism		0.5		5-10	0.6	
Avionics		0.4		15	1.0	
lealth Monitoring		0.6		20	2.3	
Substrate		0.5		10	0.9	
Thermal Control System		5.7		15	6.4	
Power Management		3.7		15	11.6	
Electrical		2.5		30	3.6	
Total System Mass		61.4			69.8	
				Value	Mass Margin	
Allov		vable Mass - Prop	osal	70 kg	<1%	F
	True	True Mass Limit - BCT		78 kg	10%	ŀ

- Mass margin of 0.2 kg (<1%) of 70 kg total
- Under mass requirement

Predicted Mass Growth of Project Daedalus. The mass margin for Project Daedalus is <1% as indicated in the figure above. The allowable mass is 70 kg as specified in the C3 Packet [43]. The mass limit is 78 kg as specified by BCT documentation for the X-Sat Venus class bus [44].

Mission Risk Analysis

COLLEGE OF ENGINEERING

VIRGINIA TECH

FTON DEPARTMENT OF

AEROSPACE AND OCEAN ENGINEERING

	System Risks	Consequence	Mitigation Strategy
SYS1	ADCS Saturation	If the ADCS system is saturated from internal motion of the payload, the spacecraft may lose control of its attitude.	Perform spacecraft maneuvers to de-saturate the control system.
SYS2	System Overheat	If thermal energy is not dissipated from components with high thermal energy, critical components may overheat.	Switch operating states as needed to dissipate thermal energy.
SYS3	SEE Occurrence	If a single event effect occurs to the onboard AI or core payload computer system, the system may lose control.	Apply radiation shielding to the core and AI computer(s). Add redundant core and AI computer systems.
SYS4	Mass Overrun	If the mass of the satellite grows beyond expectation, the satellite may not meet its mass requirement.	Optimize structures or simplify systems.
	Project Risks	Consequence	Mitigation Strategy
P1	Cost Overrun	If the system is not designed following good engineering practices, cost overruns may occur.	Perform consistent design reviews and updates to prevent cost overruns from critical design errors.
P2	Schedule Overrun	If the program is not managed correctly, schedule overruns may result in the failure to launch by the required deadline.	Consistent design reviews and updates to prevent schedule overrun. Plan mission timeline with buffer before required launch date.
Additiv	e Manufacturing Risks	Consequence	Mitigation Strategy
AM1	Deposition System Damage	If the deposition head is damaged during specimen fabrication, the system may be unable to manufacture samples.	Reinforce deposition head to prevent potential breakage.
AM2	Feedstock Breakage	If the aluminum filament is damaged the system may be unable to deposit any material resulting in mission failure.	Utilize a pin roller system to control the speed of spooling into the deposition head; stop feed if necessary.
AM3	Deposition System Overheat	If the deposition head is damaged from overheating, the system may be unable to manufacture samples.	Actively monitor the temperature of the deposition head and halt operation as needed.
F	abrication Risks	Consequence	Mitigation Strategy
F1	Print Deformation	If specimens are deformed during fabrication, the system may be unable to assemble components together.	Monitor and actively correct deposition errors with an Al FDIR monitoring system. Remove failed prints to a containment unit.
F2	System Cold Welding	If system components cold weld together, parts of the fabrication system may be unable to function.	Adhere to ESA STM-279 standard for materials used in system to prevent cold welding.

25

Plan to PDR

26

Team H.A.D.E.S.

COLLEGE OF ENGINEERING KEVIN T. CROFTON DEPARTMENT OF AEROSPACE AND OCEAN ENGINEERING VIRGINIA TECH.

Manufacturing and Testing

- Environmental and vibration/structural testing
 - Vacuum, radiation and thermal test to ensure payload stability and the survival of off the shelf parts
 - Random vibration load to simulating launch, ensuring the survival of critical payload components.
 - Conducted at NASA Langley or similar test facility.
- Modify off-the-shelf parts for space applications
 - Testing
 - To ensure proper functionality, some modifications may be necessary.
- Optimize design for assembly
 - Relocate certain components and fasteners to make assembly easier.
- AI FDIR system
 - The model used for failure detection and recovery system needs to be trained and tested on a similar DAED additive manufacturing system to ensure effectiveness.

Technological Gaps

- DAED Additive Manufacturing System
 - Develop and evaluate feasibility of DAED system.
 - Determine thermal requirements of bed for print adhesion in microgravity.
 - Environmental testing to prove DAED process in a space environment.
- Software Optimization
 - FDIR and NDE logic must be refactored for resource-constrained onboard execution.
 - Core computer software must be designed for optimized memory allocation.
- System Integration
 - AI-based NDE must interface seamlessly with the FDIR decision process.
 - Requires validation of data exchange, priority logic, and fallback.

Biggest Challenges

- Narrowing the scope of our mission.
 - ISAM is a large field with over ten unique capabilities [45].
 - Choosing a capability to pursue was difficult.
- Working with the BCT X-Sat Venus Class bus.
 - Blue Canyon Technologies was not open about system information.
 - Using an existing satellite bus introduced confusion.
 - A theoretical bus with explicit limitations would reduce confusion.
 - The Apex Aries satellite bus provides more clear documentation and better performance at an almost identical size compared to the BCT X-Sat Venus [46].
- Balancing innovation and feasibility
 - The most innovative ideas often carry the most risk as well. We worked hard to keep a balance between innovation and feasibility with our project.

Team H.A.D.E.S

Project DAEDALUS

ND OCEAN ENGINEERING

Conclusion

- This mission plan provides a proof of concept of a potential method of repeatable structural manufacturing and assembly in a space environment
- The mission would be a breakthrough for autonomous ISAM capabilities
 - Showing potential of autonomous additive manufacturing
 - Testing of DAED as a low power and heat in-space additive manufacturing method
- Many considerations have been taken within the payload design to limit the impact of:
 - Temperature fluctuations in LEO
 - Vacuum
 - Microgravity
 - Satellite bus constraints
- With proper space rating of off the shelf parts and testing of terrestrial models, this mission can be assembled and launched before the end of the decade

Questions?

[1] Blue Canyon Technologies, "BCT Product Catalog," 2024. URL <u>https://bluecanyontech.com/static/datasheet/BCT-Product-Catalog.pdf</u>

[2] Blue Canyon Technologies, "NASA RSDO Rapid_BCT Venus Marketing Sheet," Mar 07 2025. URL

https://assets.science.nasa.gov/content/dam/science/cds/spacecraft-development/rsdo/rapid-iv-

catalog/NASA%20RSDO%20Rapid_BCT%20Venus%20Marketing%20Sheet_v4.pdf

[3] Abdel, H., "When Old Meets New: JK-AR's Reinvention of the Traditional East Asian Bracket System through Digital Carpentry," ArchDaily, Nov 17 2023. Retrieved 9

April 2025. https://www.archdaily.com/1009135/when-old-meets-new-jk-ars-reinvention-of-the-traditional-east-asian-bracket-system-through-digital-carpentry

[4] Finn, P., "18 Intricate Examples of Traditional Japanese Wood Joinery - Architizer Journal," Journal, Jul 23 2018. Retrieved 9 April 2025.

https://architizer.com/blog/inspiration/industry/japanese-art-of-wood-joinery/

[5] Redwire Space. "Additive Manufacturing Facility: 3D Printing The Future in Space." Blog, March 20, 2019. <u>https://redwirespace.com/newsroom/2019-3-28-additive-</u> manufacturing-facility-3d-printing-the-future-in-space/.

[6] Noe, Rain. "3D Printing Metal Successfully Achieved in Space." Core77, September 11, 2024. https://www.core77.com/posts/133575/3D-Printing-Metal-

Successfully-Achieved-in-Space.

[7] Kolodny, K., and Brigham, L., "This Floating Robotic Factory Will Build Satellites and Spaceships in Orbit," CNBC, Jun 23 2018. Retrieved 9 April 2025.

CONSORTIUM FOR SPACE MOBILITY AND ISAM CAPABILITIES 4/16/2025

Team H.A.D.E.S.

ΙΑ ΤΕCΗ

[8] "HT08-230 NEMA 8 High Torque Stepper Motor," Applied Motion Products, 2025. Retrieved 24 February 2025. <u>https://www.applied-motion.com/s/product/nema-08-step-motorht08230/01t5i000000y0ZSAAY?name=HT08-230-NEMA-8-High-Torque-Stepper-Motor</u>

[9] "30-3030 Aluminum Extrusion," 80/20 Idea Builder, 2025. Retrieved 24 February 2025. https://8020.net/30-3030.html

[10] "MatWeb Online Materials Information Resource - Aluminum 6061-O," 2025. Retrieved 5 April 2025. https://www.matweb.com/search/DataSheet.aspx?MatGUID=6c41b0bdea564d20b9fd287c03c97923

[11] "McMaster-Carr," McMaster-Carr, 2025. Retrieved 24 February 2025. https://www.mcmaster.com/

[12] Beech, G., Adraschko, M., Bautista, J., Cerro, J., Giffiths, W., Herron, J., Holzmann, R., Hundl, R., Lee, B., Kwon, D., Martinez, R., Nakai, J., Plaisted, C., Richbourg, G., Roy, R., Shishko, R., Weitekamp, P., Wolfe, D., and Zimmerman, R., "Mass Properties Control for Space Systems," American Institute of Aeronautics and Astronautics, 1801 Alexander Bell Drive, Reston, VA 20191, 2015.

[13] Hoffmann, M., and Elwany, A., "In-Space Additive Manufacturing: A Review," *Journal of Manufacturing Science and Engineering*, Vol. 145, No. 2, 2023, p. 020801. https://doi.org/10.1115/1.4055603

[14] Hsu, K., "Metal AM Using Vibrational Resonance In-Space via Cold-Welding," AIAA SCITECH 2025 Forum, 2025. https://doi.org/10.2514/6.2025-1985

[15] Deshpande, A., and Hsu, K., "The Production of Three-Dimensional Metal Objects Using Oscillatory-Strain-Assisted Fine Wire Shaping and Joining," *Materials*, Vol. 17, No. 10, 2024, p. 2188. <u>https://doi.org/10.3390/ma17102188</u>

[16] Deshpande, A., and Hsu, K., "Acoustoplastic Metal Direct-Write: Towards Solid Aluminum 3D Printing in Ambient Conditions," Additive Manufacturing, Vol. 19, 2018, pp. 73–80. <u>https://doi.org/10.1016/j.addma.2017.11.006</u>

Team H.A.D.E.S

FTON DEPARTMENT OF

AEROSPACE AND OCEAN ENGINEERING

RGINIA TECH

[17] Gutiérrez Arias, G., Jiménez Díaz, F., Rúa Ramírez, E., and Valcarcel Guzman, J., "Thermal Analysis by Finite Elements of Hotends for 3D Printing by Fused Filament Fabrication," *Periodica Polytechnica Mechanical Engineering*, Vol. 65, No. 2, 2021, pp. 129–133. <u>https://doi.org/10.3311/PPme.16203</u>

[18] Spicer, R., Miranda, F., Cote, T., Itchkawich, T., and Black, J., "High Vacuum Capable Fused Filament Fabrication 3D Printer, Part II: High-Temperature Polymers Suitable for In-Space Manufacturing," *Journal of Spacecraft and Rockets*, Vol. 61, No. 2, 2024, pp. 526–542. <u>https://doi.org/10.2514/1.A35709</u>

[19] Han, S., Park, J., and Kim, J., "Build Plate Heating and Cooling Technique Using Peltier Element for Fused Filament Fabrication," *Electronics*, Vol. 12, No. 8, 2023, p. 1918. <u>https://doi.org/10.3390/electronics12081918</u>

[20] "Inside Electron Beam Welding," General Electric, 2019.

[21] Turnkey Industrial Metal 3D Printers for Production Parts, Prototypes, & More, en, 2024.[Online]: https://www.sciaky.com/additive-manufacturing/industrial-metal-3d-printers (visitedon 8th Dec. 2024).

[22] "Metals - Latent Heat of Melting," The Engineering Toolbox, 2008. Retrieved 3 April 2025. <u>https://www.engineeringtoolbox.com/fusion-heat-metals-d_1266.html</u>

[23] Li, W., Karnati, S., Kriewall, C., Liou, F., Newkirk, J., Brown Taminger, K. M., and Seufzer, W. J., "Fabrication and Characterization of a Functionally Graded Material from Ti-6Al-4V to SS316 by Laser Metal Deposition," *Additive Manufacturing*, Vol. 14, 2017, pp. 95–104. <u>https://doi.org/10.1016/j.addma.2016.12.006</u>

[24] Go Photonics, "YLM-150/1500-QCW-MM - IPG Photonics | Laser," 2025. Retrieved 11 April 2025. <u>https://www.gophotonics.com/products/lasers/ipg-photonics/29-152-ylm-150-1500-qcw-mm</u>

[25] PI Americas, "P-882 – P-888 PICMA[®] Stack Multilayer Piezo Actuators," 2025. Retrieved 11 April 2025. <u>https://www.pi-usa.us/en/products/piezo-actuators-stacks-benders-tubes/p-882-p-888-picma-stack-multilayer-piezo-actuators-100810</u>

[26] Xeryon Precision, "XRT-A-25-109 Compact Rotation Stage Data Sheet," Sep 04 2024

[27] Go Photonics, "YLM-150/1500-QCW-MM - IPG Photonics | Laser," 2025. Retrieved 11 April 2025. <u>https://www.gophotonics.com/products/lasers/ipg-photonics/29-152-ylm-150-1500-qcw-mm</u>

[28] "Lightweight Double-Axis Wobble Laser Welding Head LDW200 MINNI," 2025. Retrieved 11 April 2025. <u>https://www.osprilaser.com/laser-welding-head/lightweight-double-axis-wobble-laser-welding.html</u>

[29] Yang, C. J., Huang, W.-K., and Lin, K.-P., "Three-Dimensional Printing Quality Inspection Based on Transfer Learning with Convolutional Neural Networks," Sensors, Vol. 23, 2023, p. 491. <u>https://doi.org/10.3390/s23010491</u>.

[30] Alexander J. Myers a, Guadalupe Quirarte a, Francis Ogoke, Brandon M. Lane, Syed Zia Uddin, Amir Barati Farimani, Jack L. Beuth, and Jonathan A. Malen, "Highresolution melt pool thermal imaging for metals additive manufacturing using the two-color method with a color camera," 2023. URL <u>https://www.sciencedirect.com/science/article/pii/S2214860423002762</u>.

[31] NVIDIA Jetson Xavier Series,", 2025. URL https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/

Team H.A.D.E.S

References

[32] Arducam, "Arducam 8 MP Sony IMX219 Camera Module,", 2025. URL <u>https://www.arducam.com/product/arducam-raspberry-pi-camera-v2-8mp-ixm219-b0103/</u>.

[33] Teledyne FLIR, "Boson+ Datasheet," 2025. URL https://flir.netx.net/file/asset/43192/original/attachment.

[34] hepcomotion.com, H., "DTS Belt Driven Track System | Accurate & Repeatable," HepcoMotion, 2025. Retrieved 10 April 2025. https://www.hepcomotion.com/product/driven-track-systems/dts-belt-driven-track-system/

[35] Xeryon Precision, "XRT-A-25-109 Compact Rotation Stage Data Sheet," Sep 04 2024.

[36] https://www.sierraspace.com/wp-content/uploads/2024/01/THERMAL-CONTROL-SYSTEMS-Miniature-Satellite-Energy-Regulating-Radiator-MiSER.pdf

[37] "3M[™] Novec[™] 7000 Engineered Fluid," 2025. Retrieved 9 April 2025. <u>https://www.3m.com/3M/en_US/p/d/b5005006004/</u>

[38] TCS Micropumps, "Centrifugal Impeller Pumps (M-Series)," 2025. Retrieved 11 April 2025. https://micropumps.co.uk/centrifugal-impeller-pumps-m-series/

[39] Fabrisonic, "Fabrisonic – 3D Printing Metal with UAM," 2025. Retrieved 9 April 2025. https://fabrisonic.com/

References

[40] "SpaceX SmallSat Rideshare Program," SpaceX, 2025. Retrieved 5 April 2025. http://www.spacex.com/rideshare/

[41] Johnson, E. R., "Aerospace Structures," Kevin T. Crofton Department of Aerospace and Ocean Engineering in association with Virginia Tech Publishing, 2021. https://doi.org/10.21061/AerospaceStructures

[42] "SEH 3.0 NASA Program/Project Life Cycle - NASA," Feb 06 2019. Retrieved 6 April 2025. https://www.nasa.gov/reference/3-0-nasa-program-project-life-cycle/

[43] "2024 Cosmic Capstone Challenge Information Packet." Consortium for Space Mobility and ISAM Capabilities, January 28, 2025. <u>https://cosmicspace.org/c3/</u>.

[44] Blue Canyon Technologies. "NASA RSDO Rapid_BCT Venus Marketing Sheet," March 7, 2025. <u>https://assets.science.nasa.gov/content/dam/science/cds/spacecraft-development/rsdo/rapid-iv-catalog/NASA%20RSDO%20Rapid_BCT%20Venus%20Marketing%20Sheet_v4.pdf</u>.

[45] Arney, D., Mulvaney, J., Williams, C., Hernandez, W. A. R., Friz, J., Stockdale, C., Nelson, J., and Vargas, R. R., "In-Space Servicing, Assembly, and Manufacturing (ISAM) State of Play - 2024 Edition," October 2024.

[46] Apex, "Apex Satellite Bus Models," 2025. Retrieved 9 April 2025. https://www.apexspace.com/products

[47] "Online Materials Information Resource - MatWeb." Retrieved 7 December 2024. https://www.matweb.com/index.aspx

Thank You

COLLEGE OF ENGINEERING KEVIN T. CROFTON DEPARTMENT OF AEROSPACE AND OCEAN ENGINEERING VIRGINIA TECH.

Backup Slides

COLLEGE OF ENGINEERING KEVIN T. CROFTON DEPARTMENT OF AEROSPACE AND OCEAN ENGINEERING VIRGINIA TECH

Mission Phase	Pre-Phase A	Pha	ise A	Phase B	Pha	Phase C Phase D		Phase E	Phase F	
Document	MCR	SRR	MDR/SDR	PDR	CDR	SIR	ORR	FRR	DR	DRR
Stakeholder Identification	Baseline	Update	Update	Update						
Concept Definition	Baseline	Update	Update	Update	Update					
Measure of Effectiveness Definition	Approve	Approve								
Cost/Schedule	Initial	Initial	Update		Update	Update	Update	Update		
SEMP	Preliminary	Baseline	Baseline	Update	Update	Update				
Requirements	Preliminary	Baseline	Update	Update	Update					
Technical Performance Measures			Approve							
Architecture definition			Baseline							
Next level requirements			Baseline							
Required leading indicator trends			Initial	Update	Update	Update				
Design solution definition			Preliminary	Preliminary	Baseline	Update	Update			
Interface definitions			Preliminary	Baseline	Update	Update				
Implementation plans			Preliminary	Baseline	Update					
Integration plans			Preliminary	Baseline	Update	Update				
Verification/Validation plans	Approach		Preliminary	Baseline	Update	Update				
Operations plans				Baseline	Update	Update	Update			
Decommissioning plans				Preliminary	Preliminary	Preliminary	Update	Update	Update	
Disposal plans				Preliminary	Preliminary	Preliminary	Update	Update	Update	Update

Objective Hierarchy

0.167

0.354

0.331

0.148

0.40

0.05

0.35

0.10

0.10

0.05

42

	SMIC	4/	16/2025
	CONSORTIUM FOR SPACE MOBILITY AND ISAM CAPABILITIES		. 0, 2020

Material Trade Study

	Stiffness (GPa)	Yield Strength (MPa)	Ultimate Strength (MPa)	Bulk Modulus (GPa)	Density (kg/m³)	CTE (µm/m-K)	
		Maximiz	e	Ν			
Weights	0.05	0.10	0.05	0.35	0.40	0.05	Result
Al 6061	73	55	124	70	2700	21	0.218
Ti 6Al-4V	114	1100	895	97	4430	9	0.198
Inconel 718	193	1100	1375	205	8190	13	0.143
316L SS	180	205	515	134	7610	16	0.116
CuCrZr	114	200	300	130	8900	18	0.107

[47]

DEPARTMENT OF

IGINEERING

AEROSPACE AND OCEAN ENGINEERING

COLLEGE

VIRGINIA TECH

KEV

Transfer Learning with CNNs

- Memory of Each Models tested in historical research
 - VGG16: 528 MB
 - VGG19: 549
 - InceptionV3: 92 MB
 - ResNet50: 98 MB
 - EfficientNetB0: 29 MB
 - EfficientNetV2L: 479 MB
- But the size of pre-trained custom model really depends on how we build our model and design algorithms that's optimized for our system.
- NVIDIA Jetson Xavier NX:
 - 8 or 16 GB memory
 - 16GB eMMC 5.1 Storage
 - Up to 6 cameras (24 via virtual channels) 14 lanes MIPI CSI-2, D-PHY 1.2 (up to 30 Gbps)

Total Ionizing Dose

4/16/2025

CONSORTIUM FOR SPACE MOBILITY AND ISAM CAPABILITIES HADES

KEVIN T. CROFTON DEPARTMENT OF AEROSPACE AND OCEAN ENGINEERING

VIRGINIA TECH

Simulated Total Ionizing Dose

45

Al Computer Trade Study

AI Hardware	Power (W)	Dimension (mm)	Mass (kg)	Cost (\$)	Performance (TOPs)	RHA (krad)	
		Minimize			Maximiz		
Weights	0.35	0.1	0.2	0.01	0.3	0.04	Result
NVIDIA Jetson Xavier NX+shield	10 - 20	70 × 45	0.48	400	21	0.8-1.2	0.273
AMD Versal VEK280	50	240 x 186	0.54	7000	228	120	0.271
Nvidia Jetson Orin NX+shield	10 - 30	100 × 87	0.73	700	157	0.8-1.2	0.262
NVIDIA Jetson AGX Xavier+shield	10 - 40	70 × 45	0.63	1100	32	0.8-1.2	0.193

Fault Detection, Isolation, & Recovery

- All subsystems transmit telemetry and diagnostics to the core computer via the C&DH system.
 - Anomalies from Fabrication system are first detected by the AI computer using CNN-based NDE(Non-Destructive Evaluation) and analyzed.
 - Thermal, power and other subsystems send data directly to the core computer.
- The core computer autonomously performs:
 - Detection: Detect anomalies/faults or out-of-range values
 - Isolation: Isolate faulty subsystem and activates redundancy
 - Identification: Classifies fault severity (Level 0 4)
 - Reconfiguration: Issues recovery commands or switches to backup
- If unrecoverable, the core computer downlinks diagnostic data via the BCT antenna for ground intervention.

FDIR Detailed Classification

- 1. Fault Detection: Real-time monitoring of all telemetry streams for deviations, signal dropouts, or out-of-range values.
- 2. Fault Isolation: Identification of the affected subsystem, activation of safe mode, engagement of redundant components (if available), and request for additional diagnostics.
- 3. Fault Identification: Classification of the fault into severity levels:
 - a) Level 0: Minor, single unexpected data point
 - b) Level 1: Subsystem non-responsiveness
 - c) Level 2: Multiple inconsistent or anomalous values
 - d) Level 3: Failure within the FDIR handling process itself
 - e) Level 4: Critical or cascading faults affecting system-level functionality
- 4. System Reconfiguration: Dispatch of corrective commands (e.g. reboot, reinitialize). If unsuccessful, the system shifts to backup hardware. Persistent unresolved faults result in a downlink of diagnostic data to ground operations for human intervention

CDH Flowchart

FDIR Flowchart

On Board Computer

Core Computer	Power (W)	Dimensions (mm)	Mass (kg)	Cost (\$K)	Performance (MHz)	
		Maximize				
Weight	0.25	0.3	0.15	0.05	0.25	Result
Sirius OBC LEON3FT	1.3	96 x 90 x 17	0.13	50	50	0.344
MA61C CubeSat	1.5	110 x 110 x 35	0.15	200	50	0.243
Argotec FERMI OBC	5	102 x 100 x 45	0.5	250	100	0.188
BAE Systems RAD6000	5	233 x 160 x 17	1.5	20	33	0.125

Deposition Mechanism Mass Budget

Subsystem	Component	Mass (kg)	Number Required	Growth Allowance (%)	Growth (kg)	Total Mass (kg)
	DAED Piezoelectric Transducer	0.0	1	20	0.00	0.01
	DAED Nozzle	2.0	1	20	0.40	2.40
	Z Actuators	1.2	2	5	0.06	2.52
Deposition Mechanism	Z Actuator Motor	0.6	2	5	0.03	1.26
	X Actuator	1.2	2	5	0.06	2.52
	X Actuator Motor	0.6	2	5	0.03	1.26
	X-Z Gantry Frame 1	0.4	1	10	0.04	0.44
	X-Z Gantry Frame 2	0.2	1	10	0.02	0.22
	Nozzle Gantry Frame	0.1	1	15	0.02	0.15
Total Subsystem Mass (kg)						10.8

52

Filament Handling Mass Budget

Subsystem	Component	Mass (kg)	Number Required	Growth Allowance (%)	Growth (kg)	Total Mass (kg)
Filament Handling	Filament Feedstock	0.3	1	15	0.04	0.29
	Filament Storage	0.5	1	15	0.08	0.58
Total Subsystem Mass (kg)						0.9

Rotating Bed Mass Budget

Subsystem	Component	Mass (kg)	Number Required	Growth Allowance (%)	Growth (kg)	Total Mass (kg)
Rotating Bed	Z Actuator	1.2	1	5	0.06	1.26
	Z Actuator Motor	1.3	1	5	0.07	1.37
	Rotational Motor	0.3	1	5	0.01	0.26
	Bed Frame	1.0	1	5	0.20	1.20
	Bed Slewing Ring	0.3	1	15	0.05	0.35
	Linear Actuator	0.003	4	5	0.00	0.01
Total Subsystem Mass (kg)						4.4

54

Laser Assembly Mass Budget

	HAI	DES	
	1Pm	+	
• <	Ľ		+
. (+	<u>I</u>	KE S	
	\sim	~~~~~	
D	AED	ALUS	
	SD.	11.	

CEAN ENGINEERING

AEROSPACE AND O

Subsystem	Component	Mass (kg)	Number Required	Growth Allowance (%)	Growth (kg)	Total Mass (kg)
Laser Assembly	Laser Chassis	8	1	30	3.00	13.0
	Laser Wobbler	1.3	1	5	0.07	1.37
Total Subsystem Mass (kg)						11.8

Assembly Mechanism Mass Budget

Subsystem	Component	Mass (kg)	Number Required	Growth Allowance (%)	Growth (kg)	Total Mass (kg)
Assembly Mechanism	Bed Frame	1.0	1	10	0.10	1.10
	Linear Actuators	0.0	2	5	0.00	0.01
Total Subsystem Mass (kg)						1.1

Avionics and Electrical Mass Budget

	1	~~0	1
	1997		
. (•		÷
		-1854	
	O_{AED}	ALUS	

Subsystem	Component	Mass (kg)	Number Required	Growth Allowance (%)	Growth (kg)	Total Mass (kg)
Avionics	AI Computers	0.3	2	15	0.05	0.69
Avionics	C&DH Computers	0.1	3	15	0.02	0.35
Total Subsystem Mass (kg)						1.0

Health Monitoring Mass Budget

Subsystem	Component	Mass (kg)	Number Required	Growth Allowance (%)	Growth (kg)	Total Mass (kg)
	Optical Camera	0.1 0.5 0.1 0.1 0.1 0.1	5 3 3 3 3 3 3	20 20 20 20 20 20 20	0.02 0.10 0.02 0.02 0.02 0.02 0.02	0.60 1.80 0.36 0.36 0.36 0.36
	IR Camera	0.5	3	20	0.10	1.80
Health Monitoring	Watchdog Timer	0.1	3	20	0.02	0.36
	Vibration Sensor	0.1	3	20	0.02	0.36
	Temperature Sensor	0.1	3	20	0.02	0.36
	Power Sensor	0.1	3	20	0.02	0.36
Total Subsystem Mass (kg)						3.8

Substrate Mass Budget

Subsystem	Component	Mass (kg)	Number Required	Growth Allowance (%)	Growth (kg)	Total Mass (kg)
	Substrates	0.0	12	10	0.0	0.40
Substrate	Substrate Holder	0.2	1	10	0.02	0.22
	Substrate Holder Structure	0.3	1	10	0.03	0.33
Total Subsystem Mass (kg)						0.9

Thermal Control Mass Budget

Subsystem	Component	Mass (kg)	Number Required	Growth Allowance (%)	Growth (kg)	Total Mass (kg)
	Insulation/Shielding	2.0	1	15	0.30	2.30
Thermal Control System	Radiator Panels	5.0	1	15	1.50	5.75
	Active Fluid Loop	3.0	1	15	0.75	3.45
Total Subsystem Mass (kg)						11.5

Power Management Mass Budget

	HA	DES	
		+	
+ <	Ľ	, Sac	÷ •
+ C	-1)	KEZ J	۶ +
		~	
	AEL	DALU:	

Subsystem	Component	Mass (kg)	Number Required	Growth Allowance (%)	Growth (kg)	Total Mass (kg)
	PMAD	2.5	1	15	0.38	2.88
Power Management	Batteries	1.2	8	5	0.06	10.08
Electrical	Wiring Harness	2.5	1	45	1.13	3.63
Total Subsystem Mass (kg)						16.6

Chassis Cost Budget

Subsystem	Component	Cost (\$K)	Growth Allowance (%)	Growth (\$K)	Total Cost (\$K)
Chassis	Frame	2.25	20	0.45	2.70
	Shielding	3.00	20	0.60	3.60
Total Subsystem Cost					6.30

Deposition Mechanism Cost Budget

Subsystem	Component	Cost (\$K)	Growth Allowance (%)	Growth (\$K)	Total Cost (\$K)
	DAED Piezoelectric Transducer	0.75	20	0.15	0.90
	DAED Nozzle	1.35	20	0.27	1.62
	Z Actuators	6.00	5	0.30	6.30
	Z Actuator Motor	0.45	5	0.22	0.47
	X Actuator	4.00	5	0.20	4.20
Deposition Mechanism	X Actuator Motor	0.30	5	0.02	0.32
	X-Z Gantry Frame 1	0.30	10	0.03	0.33
	X-Z Gantry Frame 2	0.30	10	0.03	0.33
	Nozzle Gantry Frame	0.60	15	0.09	0.69
	Filament Feedstock	0.05	15	0.00	0.05
	Filament Storage	0.60	15	0.09	0.69
Total Subsystem Cost					15.90

Rotating Bed Cost Budget

Subsystem	Component	Cost (\$K)	Growth Allowance (%)	Growth (\$K)	Total Cost (\$K)
	Z Actuator	3.00	5	0.15	3.15
	Z Actuator Motor	0.23	5	0.01	0.24
Rotating Bed	Rotational Motor	0.12	5	0.006	0.13
	Bed Frame	0.70	20	0.14	0.84
	Bed Slewing Ring	0.25	15	0.04	0.29
	Linear Actuator	8.00	5	0.40	8.40
Total Subsystem Cost					13.00

Laser Assembly Cost Budget

Subsystem	Component	Cost (\$K)	Growth Allowance (%)	Growth (\$K)	Total Cost (\$K)
Lasor Assombly	Laser Chassis	15.00	20	3.00	18.00
Laser Assembly	Laser Wobbler	nent Cost (\$K) Growth Allowance (%) assis 15.00 22 bbler 1.00	5	0.05	1.05
Total Subsystem Cost					19.05

Assembly Mechanism Cost Budget

Subsystem	Component	Cost (\$K)	Growth Allowance (%)	Growth (\$K)	Total Cost (\$K)
Accombly Machanism	Bed Frame	0.51	25	0.13	0.64
Assembly weenanism	Linear Actuators	6.00	5	0.30	6.30
Total Subsystem Cost					6.90

Avionics Cost Budget

	firm	res	
	\sim	+	
. <	32 X		
- (+	×472		
•	\sim	357 J	+
0	AED	ALUS	

Subsystem	Component	Cost (\$K)	Growth Allowance (%)	Growth (\$K)	Total Cost (\$K)
Avionics	AI Computers	1.50	15	0.23	1.73
Avionies	C&DH Computers	300.00	15	45.00	345.00
Total Subsystem Cost					346.70

Health Monitoring Cost Budget

Subsystem	Component	Cost (\$K)	Growth Allowance (%)	Growth (\$K)	Total Cost (\$K)
	Optical Camera	1.00	20	0.20	1.20
	IR Camera	12.40	20	2.48	14.88
Health Monitoring	Watchdog Timer	2.25	20	0.45	2.70
	Vibration Sensor	2.25	20	0.45	2.70
	Temperature Sensor	4.50	20	0.90	5.40
	Power Sensor	2.25	20	0.45	2.70
Total Subsystem Cost					29.60

Substrate Cost Budget

Subsystem	Component	Cost (\$K)	Growth Allowance (%)	Growth (\$K)	Total Cost (\$K)
	Substrates	7.2	10	0.72	7.92
Substrate	Substrate Holder	0.375	10	0.037	0.4125
	Substrate Holder Structure	0.9	10	0.09	0.99
Total Subsystem Cost					9.3

Thermal Control Cost Budget

Subsystem	Component	Cost (\$K)	Growth Allowance (%)	Growth (\$K)	Total Cost (\$K)
	Insulation/Shielding	3.00	15	0.45	3.45
Thermal Control System	Radiator Panels	60.00	15	9.00	69.00
	Active Fluid Loop	37.50	15	5.63	43.13
Total Subsystem Cost					115.60

Power Management Cost Budget

Subsystem	Component	Growth Cost (\$K) Allowance (%)		Growth (\$K)	Total Cost (\$K)
Dowor Managomont	PMAD	50.00	15	7.50	57.50
Power Management	Batteries	80.00	5	4.00	84.00
Electrical	Wiring Harness	7.50	45	3.38	10.88
Total Subsystem Cost					152.40

COLLEGE OF ENGINEERING **KEVIN T. CROFTON DEPARTMENT OF** AEROSPACE AND OCEAN ENGINEERING VIRGINIA TECH.

Assembly Mechanism Power Budget

•	E.	, , ,	٠
- • C	<u>+ 7</u>		٠
	Date	-119	

Subsystem	Component	Part Number	Number Req	Volts	Amps	Power (W)	Duty Cycle (%)	Growth (%)	Total Power (W)	Total (KJ)
Assembly Mechanism	Laser chassis	YLM-QCW- MM	1	48.000	12.500	600.000	5.000	15.000	34.500	9.594
Assembly Mechanism	Linear Actuators	LEGS LT20	1	42.000	0.714	30.000	50.000	5.000	15.750	43.801
Assembly Mechanism	Laser Wobbler	LDW200 MINNI	1	24.000	0.417	10.000	10.000	20.000	1.200	0.667
Assembly Mechanism Total					13.631	640.000			51.450	54.063

Assembly Mechanism Power Budget

Avionics	AI Computers	Nvidia Jetson Orin NX	2	20.00 0	1.00 0	20.000	80.000	10.0 00	17.600	74.160	156.626
Avionics	C&DH Computers	SIRIUS LEON 3FT	3	16.00 0	0.08 1	1.300	100.00 0	10.0 00	1.430	92.700	23.861
Avionics	Radio Board Idle	RocketLab Frontier X	1	30.00 0	0.05 0	1.500	20.000	5.00 0	0.315	18.540	0.350
Avionics	Radio Board RX+TX	RocketLab Frontier X	1	30.00 0	0.40 0	12.000	80.000	5.00 0	10.080	74.160	44.852
Avionics Tota	I				1.53 1	22.800	I		19.345		225.689

Our Questions

COLLEGE OF ENGINEERING KEVIN T. CROFTON DEPARTMENT OF AEROSPACE AND OCEAN ENGINEERING VIRGINIA TECH