THE POWER OF COLLABORATION

COSMIC Capstone Challenge: Final Briefing

Team PRISM: Penn State Payload for Remote, In-Space Maintenance

4/14/2025

Students: Benjamin Knepper, Ethan Hall, Joe Kozuch, Jonathan Matthews, Sunay Neelimathara, Sanskar Raghuwanshi, Damian Williams

Advisor: Dr. Sara Lego

Mentor: Brian Roberts

PennState College of Engineering

Executive Summary

Payload for Remote, In-Space Maintenance (PRISM)

- Problem: 13% of all satellite failures are caused by battery failures
- Capability: Install an external, auxiliary battery to umbilical port
 - Test Case: Neil Gehrels Swift Observatory
- Outcome: Extend's satellites current lifespan
- Developed CONOPs, design, mass / power / uplink calculations, and CAD model
- Next steps: FEA analysis then develop physical prototype

Team

Payload for Remote, In-Space Maintenance (PRISM)

Joe Kozuch

Jonathan Mathews

Benjamin Knepper

Sanskar Raghuwanshi

Ethan Hall

CONSORTIUM FOR SPACE MOBILIT

Remote Maintenance Payload

Systems Engineering Milestones

Overview of Systems Engineering

- Program Manager Selection: 9/12/2024
- Selected Operations / Capability: 10/7/2024
- System Requirements Defined: 10/16/2024
- 3 Design Concepts Created: 11/12/2024
- Trade Studies and Final Design: 1/31/2025
- Finalized Conceptual Design: 4/2/2025
- Path to Preliminary Design Review: 4/7/2025

Overview

Extending Satellite Lifespan through Autonomous Battery Installation

- Capability Gap
 - 13% of satellite batteries lead to operational and electrical failures.
- Capability
 - To ensure longer lifespans for aging satellites by installing auxiliary batteries.
- Mission Overview
 - Add supplemental power to Neil Gehrels Swift Observatory as a proof of concept.
- Mission Operations
 - 1. Dock to Swift
 - 2. Mount Auxiliary Battery
 - 3. Seal Battery

Swift References: Kevin Cryan - Liaison/POC John Nousek - Mission Director

"Neil Gehrels Swift Observatory" Explore-Exoplanets: https://www.explore-exoplanets.eu/resource/swift/

Innovative Concepts

Most Creative Concepts (Pursued or Not)

- Gecko feet made of natural setae is employed with our robotic arms to be able attach and detach with objects
- The use of a stud welder was suggested as a form of attachment
- Epoxy to attach auxiliary battery to Swift and curing through heating

4/20/2011 WD mag HV ______1 μm____

1Guo, C., Sun, J., Ge, Y., Wang, W., Wang, D., and Dai, Z., "Biomechanism of adhesion in gecko setae - science China Life Sciences," SpringerLink Available: https://link.springer.com/article/10.1007/s11427-012-4286-y.

1"RSN-1600HD inverter drawn arc stud Welding Machine," Huayuan Plasma Cutting Machine Plasma Cutter Available: https://www.westweld.com/rsn-1600-2500-3150hd-inverter-drawn-arc-

stud-welding-machine.html

1Füglein, Dr. E., "Hazard potential of decomposition reactions using the example of hydrogen peroxide (H2O2)," *NETZSCH* Available: https://analyzing-testing.netzsch.com/en/application-literature/hazardpotential-of-decomposition-reactions-using-the-example-of-hydrogenperoxide-h2O2.

Storyboard of Macro Operation

High-Level Overview of the Mission

Storyboard of Micro Operation

Overview of Payload Operations

Extend Arms

Grab Battery

Detach Battery

Attach Battery

Animation of Key Operating Sequence

Overview of three mission operations in action

Remote Maintenance Payload

Autonomy in Mission Operations

Core Autonomy Operations

- Autonomous Rendezvous
 - Approach Swift from injection orbit
 - Match orientation of swift
- Autonomous Battery Attachment and Docking
 - 2 cameras on each arm
 - Vision processing to grab battery pack
 - LIDAR system for proximity
- Autonomous Epoxy Curing
 - 4 Heating Coils

-

Temperature Detection & Modulation

Payload Overview

High-Level Payload Subsystem Breakdown

- Structure
 - Light, "sturdy", conforming to volume
- Robotic Arms
 - Strong, maneuverable, within power and mass envelope
- CDH
 - Integrated Lidar, cameras, etc. to control and monitor movement
- Battery Pack
 - Shielded, within mass envelope, capable for Swift, volume envelope

1		
U		
	1	
0		
	· 14	

Structure

Strong and Lightweight Beryllium Truss for Payload

- Structure will have a truss styled layout
 - Top end has truss links for strong structural support at launch
 - Full structure is made of thick hollow pipes for high strength/low weight
- Structure will be composed of beryllium
 - Beryllium consists of high strength while being less dense
 - The material also has a high stiffness which is ideal for handling launch conditions

Robotic Arms

Arm Geometry, Motor Requirements, and Innovative Attachment System

- Arm Sizing and Placement
 - Dimensions based on Swift's Geometry to ensure it can reach umbilical port
 - ~ 3.5 feet long
 - Sizing achieved using reference images and presskit schematic
- Motors and Force Requirements
 - Kollmorgen AKM1 brushless DC motors
 - Requires 300 W under max load
 - Force required to move battery pack ~ 2N
 - Attachment Mechanism
 - Utilizing Gecko grippers to prevent damage to Kapton Film
 - Total 4 rotating pads
 - Effectiveness proven in microgravity by NASA

C&DH

Overview of Command and Data Handling System

• Centralized architecture

- Through the host spacecraft
- Radiation hardened processor and circuitry
- Sensor data and commands for subsystems
- PCB for battery bracket
 - Arduino-based
 - Control of epoxy extrusion
 - Control of epoxy curing (temperature control)
 - Robotic Arms

•

- 2 Cameras on each arm (Crystalspace CAM1U)
 - Vision processing system for battery bracket
 - LIDAR system for distance analysis
 - ASC GSFL-16KS

C&DH Flowchart

Overview of Command and Data Handling System

External Battery

Battery Selection, Material Considerations, and Monitoring Operation

- Utilizing four 55 Ah Lithium-Ion cell batteries from Eagle Picher
 - Swift uses 80 Ah Nickel-Hydrogen battery
 - Two for redundancy
- Material Selection
 - Beryllium for structure
 - Pyrogel for thermal insulation
 - Polyethylene for radiation shielding
- Epoxy and Curing
 - Loctite Ea 9690 aero epoxy
 - Heating coils and solenoid-controlled extrusion mechanism
- Battery Monitoring
 - Low-power, radiation-hardened PCB
 - Monitors battery status and temperature wf curing

Lith-Ion Battery							
Criteria	Explanation	Grade	Weight	30 Ah Space Cell	43 Ah Space Cell	60 Ah Space Cell	55 Ah Lithium- Ion Cell
nergy Density	Maximizes stored energy while keeping mass low, ensuring efficient power use without exceeding payload constraints.	10 - 1	30%	7	9	10	8
Mass	Lower mass reduces launch costs and improves maneuverability, making the spacecraft more efficient.	10 - 1	30%	9	8	7	7
ower Storage	Ensures enough energy for operations during eclipse periods when solar panels aren't generating power.	10 - 1	25%	5	6	7	10
Volume	Space is limited; a high energy density per unit volume ensures more power storage while leaving room for other components.	10 - 1	15%	9	8	6	6
		TOTALS:	100%	74.00%	78.00%	77.50%	79.00%
			the Martin Carl	It is the second			

Battery Pack Internals

Payload for Remote, In-Space Maintenance (PRISM)

PRISM

Bill of Materials and Mass Budget

Bill of Materials List with Calculated Mass

Bill of Materials with Mass						
Item	Quantity	Mass (kg)				
Battery 55 Ah Lithium-Ion Cell 4						
Bracket (Case)	1	11.70				
Ероху	1	0.99				
Heating Coils	0.75					
Extruders	2	1.00				
Louver System	N/A	0.57				
Truss + Mounts	N/A	11.50				
Bracket Mount Servos	2	0.99				
"Gecko" Arm Beams	2	6.44				
"Gecko" Arm Motors	3	4.50				
Ext. Bat Arm Beams	2	6.44				
Ext. Bat Arm Motors	3	4.50				
Margin (15%)	N/A	10.50				
Payload Total:						
	Bill of Materials v Item 55 Ah Lithium-Ion Cell Bracket (Case) Epoxy Heating Coils Extruders Louver System Truss + Mounts Bracket Mount Servos "Gecko" Arm Beams "Gecko" Arm Beams "Gecko" Arm Motors Ext. Bat Arm Beams Ext. Bat Arm Motors Margin (15%) Payload Total:	Bill of Materials with MassItemQuantity55 Ah Lithium-Ion Cell4Bracket (Case)1Epoxy1Heating Coils2Extruders2Louver SystemN/ATruss + MountsN/ABracket Mount Servos2"Gecko" Arm Beams2"Gecko" Arm Motors3Ext. Bat Arm Motors3Margin (15%)N/APayload Total:				

X-Sat Venus Class Bus Integration

Overview of Spacecraft Bus Subsystems

- Thermal
 - Expecting temperatures between 40-80C
- GNC
 - Gyroscopes paired with star trackers selected for precise attitude determination based on trade study results.
 - Reaction wheels chosen for 3-axis stability; sourced from Blue Canyon Technology.
- CDH

- Centralized architecture implemented for direct data flow into the RAD6000 radiationhardened processor
- Propulsion
 - Nitrogen cold gas thrusters selected for low power draw and sufficient specific impulse (~60s)
 - Total Δv required for maneuvers calculated at 220 m/s, with an estimated propellant mass of 33 kg.
- Power
 - Chose 444 W array as it was calculated that spacecraft will utilize 337 W of power

PRISM

Power Draw of Payload and Bus Meets the Mission Power Requirements

Day Time			Eclipse Time				
Subsystem	% Allocated	Watts Allocated	Subsystem	Watts Allocated			
Thermal Control	20%	47.62	Thermal Control	40%	63.62		
Attitude Control	8%	18.75	Attitude Control	5%	7.95		
Power	2%	3.75	Power	2%	3.18		
CDS	10%	24.37	CDS	5%	7.95		
Comms	20%	48.75	Comms	5%	7.95		
Propulsion	2%	3.75	Propulsion	0%	0		
Mechanisms	2%	3.75	Mechanisms	0%	0		
Battery Charging	1%	1.87	Battery Charging	0%	0		
Payload	28%	65.62	Payload	0%	0		
Error Margin	20%	43.65	Error Margin	20%	18.13		
Total During Day (W)		262	Total During Eclipse (W)		109		
Total Power	372	Watts	Array Area Req 0.91		m^2		

Power

Data Handling and Comms (Bus)

Station Location and Performance

- Downlink and Uplink at Malindi Ground Station
 - No real-time downlinks necessary
 - No observer or operator required
- Requirements for Communications System:
 - The communications system must harness S-band communication (Malindi station)
 - 2 links, uplink and downlink
 - Uplink margin: 34.30 dB
 - Downlink margin: 34.58 dB
 - Data rate: 120,000 bps
 - Fits within mass and power constraints

Risks

Payload Risk Analysis and Mitigation Strategies

ID	Risk Statement	Cause	Mitigation Plan								
1	One Actuator Stops Working	Momentum Wheel Oversaturation or Failure	- Use the other two momentum wheels in the GNC system of the spacecraft to stabilize and change the attitude.		6						
2	Camera Failure	Exposure to Radiation, Unforeseen damage from launch / space environment	 Backup cameras are included on the "wrist" of the arm in case of failure of the cameras in the hand of the arms. Since the cameras are radiation-hardened, only one should fail at a time, if at all. 	L I K E	5						Red - Before Mitigation
3	Improper Data Dump at Link	Data from CDH Subsystem is over the Communication Limit	 The Link Budget for data has a high margin of ~33 dB, which means that there is a lot of room for error regarding data transfer at the downlink. With a data rate of 120,000 bps, there is room for error with the data transfer. This can be monitored. The data can be attempted to be sent at the 		3		2	3	2,4,6	1,5	Black- After Mitigation
4	Bi-metal spring stops	Vibrational forces from	next downlink transfer with the ground station. - Add multiple springs		1				4,6	5	
5	Battery has a puncture	Damage to Aux Battery	- Include redundant battery units, in series		1 2 3 4 5 CONSEQUENCES						
6	BCM Failure	Bitflip or computational errors arise due to radiation interference	- Redundant BCM on battery				F	Remot	e Mai	ntenar	nce Pavlo

Payload

Technology Gap Assessment

Areas for Technology Advancement

- Battery Energy Density
 - Batteries with higher energy density would allow the mission to use less cells meaning a
 - reduction in weight.
- Standard ports for servicing
 - A standardized port for servicing would allow our payload to work on satellites of all types
- More advanced and lightweight robotic arms
 - More advanced arms would allow for more precise and accurate maneuvers while keeping weight down.

Biggest Challenges Encountered

Workplace Changes, Mass Issues, and Battery Attachment

1. Workplace Fluctuations

- Redesignate work as a result of losing a member
- Restructure our work to onboard new teammate

1. The robotic arm, motors, and the auxiliary battery pack had mass issues

- Materials
 - Initial: Titanium Ti-6AI-4V
 - Revised: Aluminum 6061-T6 with Carbon Fiber Reinforcement
- Redesigns
 - Reduced auxiliary battery size
- 1. Attachment of auxiliary battery pack to Swift
 - ensuring sturdy connection and port geometry
 - works well with PRISM's amount of articulation

Paper

Payload for Remote, In-Space Maintenance (PRISM)

- Key Elements
 - Abstract length: 190 words
 - Paper length: 18 pages
 - Number of references included: 20
 - Potential place to publish: AIAA Journal

tach an

Payload for Remote In-Space Maintenance Mission	it has a ssembly, e noval, design is
inan rain , Benjamin Knepper , Joe Kozuch ; Jonainan Walinews ; Sunay Neenmainara , Sanskar Raghuwansh ⁶ , Damian Williams ⁷ Aerospace 401: Space Capstone Professor Sara Lego 	eveloped battery ezvous to ul
Brian Roberts (Mentor) brian.roberts@nasa.gov	ry failure in mind,
Technical Paper (Final Report) April 10, 2025 COSNEC Captions Challenge Pennzyhania State University, USA	nd poses their use nd
Payload for Remote In-Space Maintenance (PRISM) mission aims to develop an in-space (ring capability by adding an auxiliary battery to the Neil Gehrels Swift Observatory to extend perational lifespan. This proof-of-concept mission addresses the issue of battery failure in lites, as approximately 13% of satellite failures are linked to battery degradation. PRISM normous operations. The mission architecture includes three primary phases: rendezvous with t, installation of the auxiliary battery, and departure from Swift. PRISMS will utilize the Venus S X-Sat Bus to autonomously marigate to Swift's orbit and position itself for payload ations. The payload will then mount to Swift using the grabbing arm. The payload will then use leignated battery arm to autonomously marigate as the auxiliary battery onto Swift's dilcal port. After verifying the successful attachment, PRISM will utild etach and deorbit. The lopment of the PRISM mission involved multiple trade studies and research into various systems. Path to Preliminary Design Review consists of conducting in-depth FEA analysis of the oad and fielding resources to construct a functional prototype to test on Earth.	nclude nt the y battery portant to ecurely i mounted the ning and ection, iy being to battery

erh5512@psu.edu bbk5233@psu.edu jgk5279@psu.edu jpm7213@psu.edu skn5332@psu.edu	
jpm7213@psu.edu skn5332@psu.edu	
spr5773@psu.edu diw6041@psu.edu	

Path to PDR

X-Sat Venus Class Bus Usage and Next Steps

- X-Sat Venus Class Bus deals with Communications, Propulsion, and GNC
 - Deals with Uplink / Downlink from ground station
 - Cold gas thrusters for rendezvous
 - Reaction Wheels, Star Trackers, Gyroscope
 - Next Steps:
 - Create a FEA and thermal model for analysis
 - Develop a 1:1 prototype for testing
 - Refine design based on testing

Conclusion

Payload for Remote, In-Space Maintenance

- Impact on ISAM:
 - PRISM can expand the lifespan of older satellites while meeting **all** requirements stated in the RFP
 - Developed for Swift, easily modifiable for other customers
- Innovations
 - Non-intrusive battery installation
 - Non-destructive docking and grabbing method
- Lessons Learned:
 - Design Process
 - Value of Systems Engineering
 - Collaboration and Teamwork

PRISM will revolutionize in-orbit servicing and extend satellite's lifespan through innovative external battery attachment!

Questions

Payload for Remote, In-Space Maintenance

Questions?

Backup Slides

Swift Photos

*Public Data

Gecko Feet

Orbital Express

- Both specially made for demonstration
- PRISM is made to work with an already existing platform
 - Platform not designed for servicing
 - Can be easily modified and expanded to work on other platforms

https://en.wikipedia.org/wiki/Orbita