THE POWER OF COLLABORATION

COSMIC Capstone Challenge: Final Briefing

Team Prometheus The Pennsylvania State University

Students: Katie Blyler, Yasmine Kadire, Joe Messner, Dylan Nastanski, Vraj Patel, and Bryce Pochron Advisor: Dr. Sara Lego Mentor: Michael Hernandez

4/16/2025

Executive Summary

Semi-Autonomous In-Space Welding

Need for in-space autonomous laser-cutting and welding

Objectives

- 1. Rendezvous with a target piece of space debris
- 2. Autonomous laser cutting in space
- **3.** Autonomous welding in space
- Demonstrate autonomous welding, laser-cutting, and robotic grabbing technologies in LEO for future satellite servicing and assembly

Current Status

- Critical Design Review Complete
- Integration with Venus X Class Bus
- Working towards Preliminary Design Review

Vraj Patel

Yasmine Kadire

Michael Hernandez

Dylan Nastanski

Bryce Pochron

Joe Messner

Katie Blyler

2.4 Systems Engineering Milestones

CONSORTIUM FOR SPACE MOBILITY AND ISAM CAPABILITIES

Timeline for Functional Architecture completion, System Readiness Review, and CDR

4.1 Paper

Technical Report Information

- Highlighting key sections
 - Capability gap
 - Top level mission requirement
 - Mission overview
 - Power and Mass budget
 - Payload design
 - Host spacecraft integration
 - Risk and fault recovery options
- Key Components of the Paper
 - Abstract length: 175 words
 - Length of paper: 18 pages
 - Number of references included: 34
 - Potential places to publish: SciTech

Prometheus Payload

Katie A. Blyler, Yasmine B. Kadire, Joseph E. Messner, Dylan L. Nastanski, Vraj P. Patel, Bryce A. Pochron¹ The Pennsylvania State University, University Park, ¹PA, 16802, United States of America

Sara Lego² The Pennsylvania State University, University Park, PA, 16802, United States of America

> Michael Hernandez³ iMetalX, Sausalito, California, 94965, United States of America

The Prometheus mission demonstrates an in-space servicing, assembly, and manufacturing (ISAM) payload capable of semi-autonomous rendezvous and debris capture, laser-cutting, and welding, integrated with the VENUS X-Class Bus. Using robotic arms equipped with a modified Paton electron beam welder and a conceptual fiber laser cutter, the system demonstrates procedures necessary for structural repairs and material processing in orbit. Diverse types of analysis confirm feasibility: Finite Element Analysis validated structural integrity under 5g launch loads and a power budget was designed through MATLAB's eclipse simulations and SMAD principles to ensure mission operations within the 444W cap from the Bus. Trade studies were used in the selection of actuators, computers, the welding gun, the laser-cutter, and the robotic arms. The mission advances through five stages including orbit determination, semi-autonomous medezys and brief structural test for weld integrity and then concludes its mission and deorbits. By demonstrating scalable in-space repair workflows, Prometheus advances the technological readiness of ISAM tools critical to future orbital infrastructure and debris mitigation efforts.

Student, Aerospace Engineering, AIAA Undergraduate Student Member
 Associate Teaching Professor, Aerospace Engineering
 Senior GNC Engineer: Space Systems Architect

2.2 Storyboard of Complete Operation

CONOPS

Laser Cutting

Ytterbium Doped Fiber Laser Cutting

- Laser diodes produce pump light, which is directed into the fiber. Ytterbium ions in the doped fiber absorb the light and get excited.
- Excited ions release photons as they return to lower energy states. Stimulated emission causes a chain reaction, amplifying the light.
- Bragg gratings trap and reflect light to build up the laser beam. Some light is let out, forming the output laser beam.
- A lens focuses the beam for precise cutting with minimal heat spread.

Electron Beam Welder Design

Paton's New Electron Beam Emission Gun

- Lanthanum Hexaboride cathode and triode emission system to generate an electron beam
- Aluminum Oxide insulation offers thermal radiation management and resistance to voltage breakdown
- Capable of welding aluminum alloys up to 6 mm thick and titanium or stainless steel up to 4 mm thick.
 - Specific power density reaches up to 16 kW/mm² in the focal zone.
- Weighs only 1.8 kg, making it suitable for robotic or manual operation in space environments.

Image from Paton et. Al., "New Electron Beam Gun for Welding in Space,"," Science and Technology of Welding and Joining, Vol. 24, No. 4, 2019, pp. 320–326. https://doi.org/10.1080/13621718.2018.1534794

Robotic Arm

Trade Study and Analysis

• Trade Study

• Known and tested for in-space operations

• High TRL Arms

• Hybrid Arm Design

CONSORTIUM FOR SPACE MOBILITY AND ISAM CAPABILITIES

Cri	iteria	Weight	Canadarm2	Dextre	GITAI S1	MDA LMA	Maxar SPIDER	Luna Arm
М	lass	10%	2	2	4	4	3	5
Po	ower	10%	2	2	4	4	3	5
Pa Ca	yload pacity	15%	5	4	3	4	5	2
Rar Mo	nge of otion	15%	4	5	3	4	4	3
Rad Envir Tole	iation/ onment erance	10%	5	5	3	4	5	4
Auto Co Mo	onomy/ ontrol odes	15%	3	4	5	4	5	4
FI Her	light ritage	10%	5	5	3	3	3	2
Co Avai	ost & lability	15%	2	2	5	4	3	5
Tota	l Score	100%	3.4	3.6	3.9	4.05	3.85	4
1 = Pc	or		3 = Moderate		5 = Excellent			

Created in Excel by Team Prometheus

Structures

FEA of Payload experiencing Launch Conditions

- Using SolidWorks Simulation
- Simulating launch Conditions of 5g's for Falcon 9
- Low deformations on the scale of µm
- Structures will not fail through the mission

Created in SolidWorks by Team Prometheus

Thermal

Trade Study and Analysis

- Thermal equations
- Hot and Cold Cases
- Passive & Active Controls Systems

 Potential Coating Material
 Active Control Options

$$egin{aligned} \dot{Q} &= \dot{Q_{in}} - \dot{Q_{rad}} = q_{IR}A_{IR} + (1+a)\dot{q_{\odot}}A_{\odot}\hat{s}lpha + \dot{Q_{gen}} - A_s\sigmaarepsilon T^4 \ \dot{Q} &= c_pmrac{dT}{dt} pprox c_pmrac{\Delta T}{\Delta t} \ T_{i+1} &= T_i + rac{\Delta t}{\Delta t}\dot{Q}. \end{aligned}$$

Versteeg, C., and Cotten, D. L., *Preliminary thermal analysis of small satellites* Available: <u>https://s3vi.ndc.nasa.gov/ssri-kb/static/resources/Preliminary Thermal Analysis of Small Satellites.pdf</u>.

 $c_p m$

Versteeg, C., and Cotten, D. L., Preliminary thermal analysis of small satellites Available: <u>https://s3vi.ndc</u> kb/static/resources/Preliminary_Thermal_Analysis_of_Small_Satellites.pdf.

	Aeroglaze	Carbon NS-	N-150-1	Beryllium	Hughson	384 ESH*
	Z306	7		Copper	L-300	UV
Absorption	0.96	0.96	0.94	0.92	0.95	0.97
Emissivity	0.91	0.88	0.94	0.72	0.84	0.75

NASA Available: https://ntrs.nasa.gov/api/citations/19840015630/downloads/19840015630.pdf

2.3 Data Handling and Comms

2.3 Data Handling and Comms

Communications Architecture

- Debris Selection: DELTA 1 DEB
- Ground Station: Abu Dhabi LEOLUT
 - o 38 Passes/Week available
 - Avg Contact Duration 876.223s
- Type of Data:
 - Telemetry/Status data (50KB/pass)
 - Structural Test data (10MB/pass)

	Downlink	Uplink
Frequency [GHz]	1.5	2.0
Xmtr. Power [W]	0.5	0.3
Bitrate [Mbps]	5.3	5.09
Link Margin [dB]	10.17	7.80

Power

Power Budget

Maximum instantaneous power consumption during solar illumination and eclipse

- During mechanical & machining operations, average power consumption is 305.93 Watts
- During eclipse times, most
 functionality is in sleep mode.
 Thermal and power systems are
 allocated more power to keep
 payload thermally regulated

Power			
Venus X Class Bus	% Breakdown	Wattage [W]	Venus X Class Bus
Thermal Control	30%	47.7133	Thermal Control
Attitude Control	11%	17.4949	Attitude Control
Power	3%	4.7713	Power
CDS	12%	19.0853	CDS
Communications	13%	20.6758	Communications
Propulsion	1%	1.5904	Propulsion
Battery Charging	5%	7.9522	Battery Charging

	Power Budget (Eclipse)							
/]	Venus X Class Bus	% Breakdown	Wattage [W]					
33	Thermal Control	50%	79.5221					
49	Attitude Control	2%	3.1809					
13	Power	4%	6.3618					
53	CDS	4%	6.3618					
58	Communications	2%	3.1809					
04	Propulsion	1%	1.5904					
22	Battery Charging	0%	0.0000					

		and the second	the second of the second s	and the second state of th	
Prometheus Payload	% Breakdown	Wattage [W]	Prometheus Payload	% Breakdown	Wattage [W
hermal Control	5%	14.2478	Thermal Control	3%	8.54
Attitude Control	0%	0.0000	Attitude Control	0%	0.00
Power	1.5%	4.2743	Power	6%	17.09
CDS	4%	11.3982	CDS	2%	5.69
Communications	5.0%	14.2478	Communications	0%	0.00
Propulsion	0%	0.0000	Propulsion	0%	0.00
1 echanism	50.0%	142.4779	Mechanism	0%	0.00
otal Illumnation Power	Pi	305.9292	Total Eclipse Power	Pe	131.54

Guidance, Navigation, and Control

Control Pipeline

- Al control methods
 - o Efficient
 - o Flexible
- Extended Kalman Filter for state estimation

Sensors:

- Sun sensor
- o Gyroscopes
- Magnetometers
- o Cameras

Mekky, T., and Habib, A., "Artificial Intelligence for spacecraft guidance, navigation, and control: A state-of-the-art - aerospace systems," *SpringerLink* Available: <u>https://link.springer.com/article/10.1007/s42401-022-00152-y</u>.

Mass Budget

Payload on-board weight by part

- Bottoms-up to Top-Down budgeting technique
- Underbudget to allow debris weight onto payload without exceeding mass constraints

	TRL	Quantity	Unit Mass [kg]	Total Mass [kg]	% Breakdown
hermal				4	8.66%
C&DH					
Computer	9	1	0.032	0.032	0.07%
Wiring	9	0.75	0.087	0.06525	0.14%
Battery					
Battery	4	2	10	20	43.28%
Converter	4	2	1.322	2.644	5.72%
Structure					
Linear Actuators	7	2	0.0055	0.011	0.02%
Rotational					
Actuators	6	2	0.45	0.9	1.95%
EBW	8	1	1.8	1.8	3.90%
Grabbing Hands	1	2	0.04	0.08	0.17%
Base Payload	9	1	16.68	16.68	36.09%
				46.21225	100.00%

3-View of Payload

Size Constraint Validation

Created in SolidWorks by Team Prometheus

Payload Dimensions (in inches)

Prometheus Payload

Body Overview

• Primary Material:

- Aluminum 6061 T6
 - NASA approved metal for space flight
 - Low outgassing
 - Good metal for welding

• Utilizes 2 Robotic Arms

- Will be able to pack into the body of the satellite for compaction
- One will have a grabber at the end
- The other will have the electron beam welder

2.1 Animation of Key Operating Sequence

CONSORTIUM FOR SPACE MOBILITY AND ISAM CAPABILITIES

Payload Operations

Created in SolidWorks by Team Prometheus

Operations: (1) Rendezvous with Debris, (2) Laser Cutting, (3) Welding

3.2 Technology Gap Assessment

Involving size/mass constraints and adaptive decision-making for autonomous operations

• Current fiber laser cutters are too large for practical payload integration.

 Servicing systems require human input and lack real-time adaptive decision-making and autonomous monitoring.

 Existing batteries are too heavy or lack sufficient energy density to support extended laser cutting and welding without frequent recharging.

3.3 Biggest Challenges Encountered

Concern for power and heating during operation and proper debris mitigation

• Lack of Heat Dissipation in Fiber Laser Cutter and Welder

Challenge: No solution was developed to prevent overheating in the fiber laser cutter and welder. Excessive heat
could melt the gun tips and potentially interfere with sensitive payload electronics. Without a proper heat dissipation
system, prolonged operation posed a risk to both equipment and overall mission success.

Power Supply and Conversion Issues

Challenge: The battery does not have sufficient capacity to support both welding and laser cutting operations.
 Additionally, a suitable space-grade DC-DC converter that met operational requirements could not be found

Lack of Active Debris Mitigation During Servicing

Challenge: There was no active strategy in place to manage debris generated during servicing operations.
 Uncontrolled debris could pose a hazard to both the payload and surrounding components. To address this, all laser cutting shall be conducted within the payload bay to contain debris and minimize risks.

1.5 Risks

Mitigation Strategies and Effects

Risks	Mitigation Strategy
1. Autonomy Fail	Manual Override Contingency
2. Hit Debris	
2.1 Self-generated Debris	Contain laser cutting and welding procedures inside the payload
2.2 External Debris	Rendezvous with isolated piece of debris
3. Insufficient Battery Charge	Add additional battery
4. Overheated internal parts	Increase radiation hardening and thermal coverage near laser and welding arm
5. Low TRL	Additional component testing with in-space conditions

Very Likely			5.0		2.1
Likely			3.0	2.2	4.0
Possible		5.0			1.0
Unlikely			2.1 ◄	2.2	→ 4.0
Very Unlikely		1.0	→ 3.0		
	Negligible	Minor	Moderate	Significant	Severe

3.1 Innovative Concepts

Additional Concepts

Different methods of welding and plate management

1.6 Path to PDR

Subsystem Decomposition

Subsystem Decomposition and Analysis for Venus X Class Bus Complete

AND ISAM CAPABILITIES

1.6 Path to PDR

Future Work

- Advanced Arm Control Methods Development
- Detailed Electron Beam Welding Gun Integration Modifications
- Increased Technology Readiness Levels for Power System Components
- Preparing for End of Decade
 - Bill of Materials
 - Manufacturing
 - Prototype Testing
 - Advancements in AI control methods

Prometheus Payload: Bill of Materials

	TRL	Quantity	Unit Price	Total Cost
C&DH				
Computer	9	1	\$50,000	\$50,000
Wiring	9	0.75	\$500	\$375
Battery				
Battery	4	2	\$145	\$290
Converter	4	2	\$1,435	\$2,870
Structure				
Linear Actuators	7	2	\$1,586	\$3,172
Rotational Actuators	6	2	\$3,456	\$6,912
EBW	8	1	\$100,000	\$100,000
Grabbing Hands	1	0.04	\$4	\$0.16
Base Payload	9	16.64	\$4	\$67
Payload Total				\$163,686
Launch Vehicle		1	\$ 52 Million	\$52 Million

Lessons Learned

Classroom concepts applied technically

Applying Technical Skills

- o Power
- o Thermal
- Structures
- o Orbit Analysis

Group Specific

- Professional workplace environment
- o Effective communication
- Task delegation

Summary

Prometheus

Key Innovations

- Semi-Autonomous Laser Cutter
- Electron Beam Welder Manipulation
- o. Debris Mitigation Plan

• Impact to ISAM

- Advancements in Welding and Laser Cutting Automation
- In-Space Testing of Lightweight Electron Beam Emission System

reated in SolidWorks by Team Prometheus

Prometheus

Questions?

Backup Slides

Macro Mission Architecture

Prometheus

Functional Architecture

🚫 Visual Paradigm Requirements Launch And Orbit Determination Laser Cutting Welding Testing & Shutdown Rendezvous 2.1 Reach target 3.1 Perform power 4.1 Complete several 5.1 Attach both 1.1 Select Target altitude and begin and thermal rotations to recharge robotic arms onto Debris in LEO attitude determination diagnostic checks Battery welded surface 3.2 Mechanically 5.2 Apply axial force 1.2 Select Ground 2.2 Rendezvous with 4.2 Perform power deploy test metal and torque Stations and perfrom space debris and and thermal plate and EBW laser continously until STK simulations match attitude diagnostic checks cutter failure 4.3 Deploy EBW 1.3 Determine 3.3 Begin laser welder: Position 2.3 Deploy Telescopic 5.3 Transmit relays to aunch systems, site, cutting flat square of debris parallel to plate Arms ground stations and eclipse times TBD dimensions using robotic arms and flush the surfaces 3.4 Continously 2.4 Determine optimal 1.4 Perfrom initial 5.4 Shut down monitor power and position to grab onto 4.4 Position welder systems except Orbit Determintion thermal systems. coincident to an edge debris thermal and power Terminate if threshold and begin spot weld regulation. Minimal reached communications 2.5 Grab space debris and correct 3.5 Inspect for clean 4.5 Check Power attitude to avoid cut and retract EBW level. If enough tumbling cutter. reserve, continue 4.6 Complete several rotations to recharge Battery & repeat

Top Level

 4.7 Inspect for complete weld and retract tool.

Deployed and Launch Configurations

CONSORTIUM FOR SPACE MOBILITY

Prometheus

Final Design: (a) payload configuration once deployed and in use (b) payload configuration for launch (dimensions in inches)

Payload Material – Trade Study

Prometheus

	Weight	Goal	Aluminum Al 6061-T4 [18]	Titanium Ti- 6Al-4v [19]	Stainless Steel SS321 [20]
Density	30%	Min	$2.7 \mathrm{g/cm^3}$	$4.43 {\rm g/cm^3}$	$7.9 {\rm g/cm^3}$
Normalized Value	0070	IVIIII	1	0.6673	0
Weldability	30%	Max	3	2	1
Normalized Value			1	0.5	0
Young's Modulus	5%	Max	69 GPa	114 GPa	193 GPa
Normalized Value			0	0.3629	1
Ultimate Tensile	5%	Max	240 MPa	950 MPa	515 MPa
Strength					
Normalized Value			0	1	0.3873
Melting Point	25%	Min	650 °C	1660 °C	1425 °C
Normalized Value			1	0	0.7673
Coefficient of	5%	Min	23.6 µm/(m*K)	9.7 µm/(m*K)	18.6
Thermal Expansion					µm/(m*K)
Normalized Value			0	1	0.6403
Total			0.85	0.468335	0.58134

Final Choice: Aluminum AI 6061-T4 for weldability and low density

Linear Actuator- Trade Study

Prometheus

	Weight	Goal	Xeryon Lightweight Linear Actuators [7,8,9]	UltraMotion Servocylinder [10]	Firgelli Micro Pen Actuator with Feedback [11]
Mass	25%	Min	5.5 g	1905.1 g	81 g
Normalized Value			1	0	0.9605
Power Consumption	25%	Min	5W	180 W	3.6 W
Normalized Value			0.9921	0	1
Volume	15%	Min	1.8 cm ³	988.1 cm ³	1.47 cm ³
Normalized Value			0.9997	0	1
Extension Length	10%	Max	11.8 in	1.75 in	3.9 in
Normalized Value			1	0	0.2139
Cost per Actuator	5%	Min	\$1586	\$3,208	\$135.95
Normalized Value			0.5280	0	1
Technology Readiness Level	20%	Max	7	9	4
Normalized Value			0.6000	1	0
Total			0.8944	0.2000	0.7115

Final Choice: Zeryon Lightweight Linear Actuators due to size and power requirements

Rotary Actuator- Trade Study

Prometheus

	Weight	Goal	Xeryon Precision Rotation Stages [13, 14, 15]	MOOG Model HT1 Rotary Incremental Actuator [16]	Space Lock Rotary Actuator [17]
Mass	20 %	Min	0.450 kg	0.9525 kg	0.8 kg
Normalized Value			1	0	0.3035
Power Consumption	30 %	Min	5 W	10 W	2.7 W
Normalized Value			0.6849	0	1
Volume	10 %	Min	10.0125 cm ³	432.4 cm ³	202.2 cm ³
Normalized Value			1	0	0.5450
Technology	40 %	Max	6	9	6
Readiness Level					
Normalized Value			0	1	0
Total			0.5055	0.4	0.4152

Final Choice: Zeryon Precision Rotation States due to size and power requirements

Computer – Trade Study

Prometheus

	Weight	Goal	Xiphos Q7s	iXblue Muons	EnduroSat OBC
Power	45%	Max	5-15W	10-20W	1-5W
Normalized Value			0.333	1	0
Mass	35%	Min	32g	60g	130g
Normalized Value			1	0.286	0
Flight History	20%	Max	1	0	1
Total	100%		0.6998	0.5501	0.2

Final Choice: Xiphos Q7s

Electron Beam Welding Gun – Trade Study

Prometheus

	Weight	Goal	Paton New EBW Gun	Skylab M- 551	Universal Hand Tool	Salyut-7 Versatile Hand Tool
Accel. Voltage	20%	Max	10 kV	20 kV	10 kV	5 kV
Normalized Value			0.667	1	0.667	0
Beam Current	20%	Max	250 mA	80 mA	100 mA	100 mA
Normalized Value			1	0	0.1176	0.1176
Beam Power	35%	Max	2.5 kW	1.6 kW	1 kW	0.5 kW
Normalized Value			1	0.55	0.25	0
Dimensions (L/W/H) in mm	10%	Min	220/80/290	400 mm sphere		290/135/230
Normalized Value			0	1		0.01334
Mass	15%	Min	1.8 kg	20 kg	4.5 kg	3.5 kg
Normalized Value			1	0	0.8516	0.9066
Total			0.8334	0.4925	0.37216	0.160844

Final Choice: Paton New Electron Beam Welding Gun

Laser Cutting Method - Trade Study

Prometheus

Criteria	Weight	Goal	CO2 Laser	Fiber Laser	Neodymium Yttrium Laser
Power Efficiency	25%	Max	5-20%	30-50%	<u>20%</u>
Normalized Value			0	1	.273
Beam Quality	15%	Min	.25mm	.015mm	.2mm
Normalized Value			0	1	.212
Cutting Speed	5%	Max	3.6 m/min	9m/min	2m/min
Normalized Value			.229	1	0
Material Compatibility	5%	Max	1	3	2
Normalized Value			0	1	.5
Size and Weight	15%	Min	3	1	1
Normalized Value			0	1	1
Vacuum Suitability	15%	Max	1	1	3
Normalized Value			0	0	1
Operational Lifetime	5%	Max	2000 hours	25000 hours	<u>10,000-15000</u>
Normalized Value			0	1	.4565
Cost	5%	Min	3	1	2
Normalized Value			1	0	.5
Totals	100%		.06145	.85	.472875

Final Choice: Ytterbium Doped Fiber Laser Cutter

Ground Station – Trade Study

Prometheus

	Weight	Goal	Abu Dhabi Leolut	Clewiston	Tidbinbilla
Passes per week	30%	Max	38	35	40
Normalized Value			0.600	0	1
Min Contact Duration	10%	Max	47.745 s	23.908 s	0.938 s
Normalized Value			1	0.490	0
Max Contact Duration	20%	Max	1143.981 s	1139.145 s	1047.855 s
Normalized Value			1	0.950	0
Avg Contact Duration	40%	Max	876.223 s	864.221 s	567.062
Normalized Value			1	0.961	0
Total			0.88	0.6234	0.3

Final Choice: Abu Dhabi

Launch Vehicle – Trade Study

Prometheus

	Weight	Goal	SpaceX Falcon 9 [36, 37]	Rocket Lab Electron [38]	Relativity Terran 1 [39]
Reusability	20%	Max	3	2	3
Normalized Value			1	0	1
Reliability	30%	Max	446 completed missions	61 completed missions	1 completed mission
Normalized Value			1	0.1325	0
Payload Mass to LEO	30%	Max	22,800 kg	300 kg	1,250 kg
Normalized Value			1	0	0.0422
ESPA Ring Compatibility	10%	Max	3	3	3
Normalized Value			1	1	1
Estimated Cost	10%	Min	\$52 million	\$5 million	\$12 million
Normalized Value			0	1	0.8511
Total			0.900	0.23975	0.3978

Prometheus

Final Choice: SpaceX, Falcon 9 Rocket – Launched Out of Vandenberg Airforce Base

Propulsion – Trade Study

Prometheus

	Target	Weight	Monarc-90	MRE – 5.0	MR-107	CHT-20
Mass (kg)	Min	25%	1	1.5	0.74	0.395
Normalized Value			0.4525	0	0.6878	1
Length (m)	Min	15%	0.3	0.264	0.213	0.195
Normalized Value			0	0.3429	0.8286	1
Thrust (N)	Max	35%	90	28	296	24.6
Normalized Value			0.2410	0.0125	1	0
lsp (s)	Max	25%	235	232	232	230
Normalized Value			1	0.4	0.4	0
Total			0.4475	0.1558	0.7462	0.4

Final Choice: Aerojet MR-107

Prometheus

	Weight	Goal	Stability	Optimization	AI
Algorithm Flexibility	30%	Max	1	3	2
Normalized Score			0	1	0.5
Algorithm Efficiency	40%	Max	2	1	3
Normalized Score			0.5	0	1
Algorithm Stability and Robustness	30%	Max	3	1	2
Normalized Score			1	0	0.5
Total			0.5	0.3	0.7

Final Choice: Al Based Methods

Link Budget (Downlink)

DOWNLINK				
Freq.	f	Ghz	input	1.5
Xmtr Pwr	Р	W.	input	0.500
Xmtr Pwr	Р	dbW	10 log(P)	-3.01
Xmtr line loss	L	dB	input	-1.00
Xmtr Ant. Beamwidth	q _t	deg	Eq. (13-19)	64.746
Peak Xmt. Ant. Gain	G _{pt}	dB	Eq. (13-20)	8.08
Xmt. Ant. Diam.	D _t	m	input	0.21
Xmt. Ant. Pointing Error	e _t	deg	input	0.00
Xmt. Ant. Pointing Loss	L _{pt}	dB	Eq. (13-21)	0.00
Xmt Ant. Gain	G _t	dB	G _{pt} +L _{pt}	8.08
EIRP	EIRP	dB	$P+L_1+G_t$	4.07
Prop. Path Length	S	km	input	1.087E+03
Space Loss	L _s	dB	Eq. (13-23a)	-156.94
Prop. & Polariz. Loss	L _a	dB	Fig. 13-10	-0.20
Rcv. Ant. Diam.	D _r	m	input	2.30
Peak Rcv. Ant. Gain	G _{rp}	dB	Eq. (13-18a)	28.82
Rcv. Ant. Beamwidth	q _r	deg	Eq. (13-19)	5.91
Rcv. Ant. Pointing Error	e _r	deg	input	1.20
Rcv. Ant. Pointing Loss	L _{pr}	dB	Eq. (13-21)	-0.49
Rcv. Ant. Gain	G _r	dB	$G_{rp}+L_{pr}$	28.33
System Noise Temp.	T _s	К	input (using Table 13-10)	221.00
Data Rate	R	bps	input	5.29E+06
Est. $E_b/N_o(1)$	E_b/N_o	dB	Eq. (13-13)	13.17
Bit Error Rate	BER		input	1.0E-04
			Fig. 13-9 (BPSK, R-1/2	
Rqd. $E_b/N_o(2)$		dB	Viterbi)	3.00
Implementation Loss (3)		dB	input (standard estimate)	0.00
Margin		dB	(1)-(2)+(3)	10.17

Link Budget (Uplink)

UPLINK				
Freq.	f	Ghz	input	2.0
Xmtr Pwr	Р	W.	input	0.3
Xmtr Pwr	Р	dbW	10 log(P)	-6.02
Xmtr line loss	L	dB	input	-1.00
Xmtr Ant. Beamwidth	q _t	deg	Eq. (13-19)	4.565
Peak Xmt. Ant. Gain	G _{pt}	dB	Eq. (13-20)	31.11
Xmt. Ant. Diam.	D _t	m	input	2.30
Xmt. Ant. Pointing Error	et	deg	input	1.20
Xmt. Ant. Pointing Loss	L _{pt}	dB	Eq. (13-21)	-0.83
Xmt Ant. Gain	G _t	dB	G _{pt} +L _{pt}	30.28
EIRP	EIRP	dB	$P+L_1+G_t$	23.26
Prop. Path Length	S	km	input	1.087E+03
Space Loss	L _s	dB	Eq. (13-23a)	-159.19
Prop. & Polariz. Loss	L _a	dB	Fig. 13-10	-0.20
Rcv. Ant. Diam.	D _r	m	input	0.21
Peak Rcv. Ant. Gain	G _{rp}	dB	Eq. (13-18a)	10.28
Rcv. Ant. Beamwidth	q _r	deg	Eq. (13-19)	50.00
Rcv. Ant. Pointing Error	e _r	deg	input	0.00
Rcv. Ant. Pointing Loss	L _{pr}	dB	Eq. (13-21)	0.00
Rcv. Ant. Gain	G _r	dB	$G_{rp}+L_{pr}$	10.28
System Noise Temp.	T _s	Κ	input (using Table 13-10)	614.00
Data Rate	R	bps	input	5.09E+05
Est. $E_b/N_o(1)$	E_b/N_o	dB	Eq. (13-13)	4.15
Bit Error Rate	BER		input	1.2E-01
Rqd. $E_{b}/N_{o}(2)$		dB	Fig. 13-9 (BPSK, R-1/2 Viterbi)	3.00
Implementation Loss (3)		dB	input (standard estimate)	3.00
Margin		dB	(1)-(2)+(3)	7.80

Orbital Analysis

- Chosen Debris: DELTA 1 DEB
 Relatively isolated
 - LEO
- Will remain on DELTA 1 DEB's orbit for the remainder of the mission
- Orbital elements determined in STK

Orbital	Elements
Semi-Major Axis	7500 km
Eccentricity	0.005618
nclination	99.940°
RAAN	350.223°
Argument of Perigee	20.342°
Orbital Period	107.73 min

