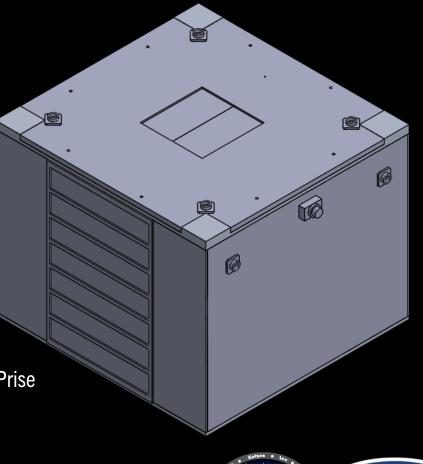
C3 COMPETITION BRIEF-OUT

SCCRAM Jet Penn State University


Students: Aidan McGrath, Christian Bouarouy, Coral Lee, Maddy Kinevy, Sophia Kotzen, Ryan Prise

Advisor: Dr. Sara Lego

Mentor: Dr. Ed Tate

April 14, 2025

Christian Bouarouy Command & Data Handling

Coral Lee Communications, CAD

Maddy Kinevy Systems Engineering, Structures

Aidan McGrath Propulsion, Orbital Mechanics

Sophia Kotzen

Ryan Prise

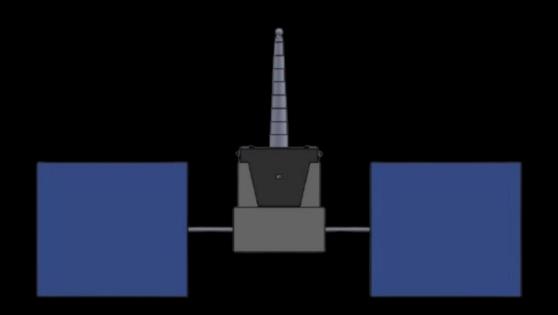
EXECUTIVE SUMMARY

SCRAMM Jet – Final Payload Design

<u>Problem:</u> A satellite's lifespan is limited to the longevity of its internal components.

<u>Status:</u> Missions exist to repair physical components; none have successfully repowered an on-board battery by induction.

<u>Capability:</u> The SCCRAM Jet mission aims to recharge the battery of a low-power satellite using induction charging.

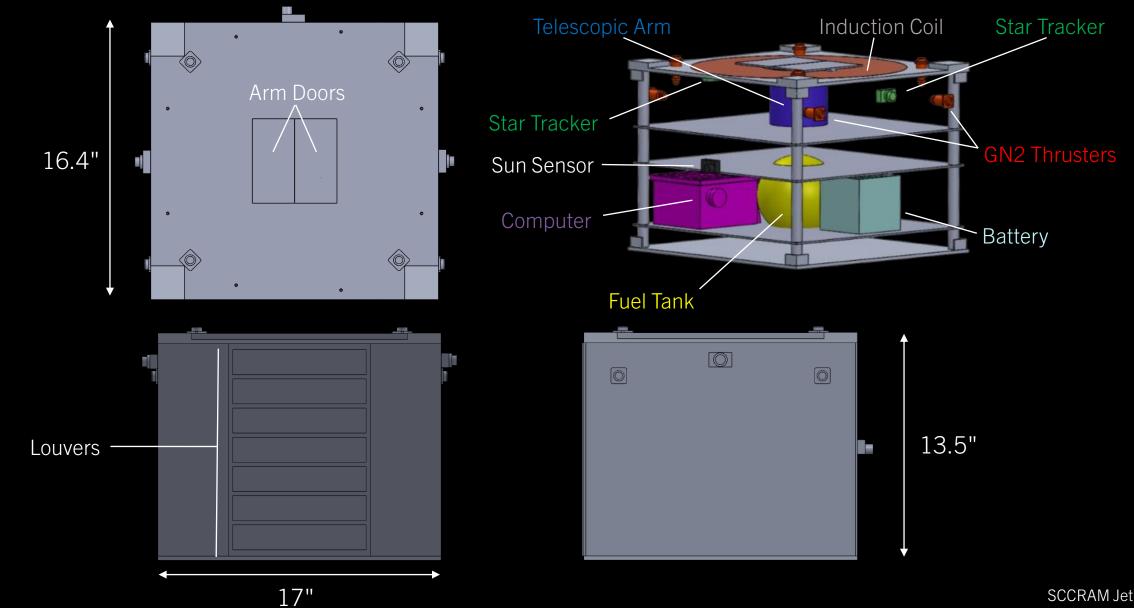

<u>Solution:</u> Recharging an existing satellite, rather than relaunching, will allow organizations to save time, money, and labor while practicing sustainable operations.

Autonomous Operations:

- 1. Rendezvous with target satellite.
- 2. Docking with Target Satellite.
- 3. Induction charging.

2.4 SYSTEMS ENGINEERING MILESTONES

Progression of Mission Development


Milestone	Date Completed
Program Manager Selection	September 13, 2024
Operations Definition	September 18, 2024
Top-Level Requirements	October 16, 2024
System Requirements Report	December 15, 2024
Conceptual Design Report	March 19, 2024
Trade Studies	January to March 2025
Path to PDR	March 2025

3-VIEW: CAD MODEL

Dimensioned and Labeled CAD Model

2.2 STORYBOARD OF COMPLETE OPERATION

Concept of Operations

	2	3		5
Rendezvous to the orbit of the target satellite	Align the faces and edges of the two satellites	Extend telescopic arm and dock	Establish secure connection & retract arm	Begin power transfer via induction

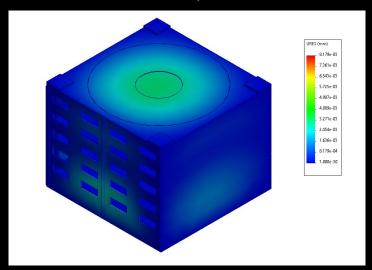
2.1 ANIMATION OF KEY OPERATING SEQUENCE

SOLIDWORKS Animation

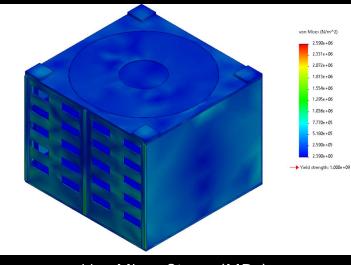
Launch

SCCRAM Jet

Thermal System Analysis


<u>Key Features</u>

- Multi-layer insulation
- Passive louvers


Characteristics	Louver System	Deployable Radiators
Complexity	Passive, operates with bimetallic springs which expand and contract based on the internal temperature of the payload wall, will be built directly as a part of payload	Passive, requires deployment, one of the payload faces will have to be a radiator
Reliability	sudden temperature changes i e eclinses	Max heat loss: 2.75 W at 90deg, will continue to dissipate heat at a constant level, can reduce internal temperatures by around 50 C with the proper rotation
Efficiency		Can be actively rotated, changing the total amount of heat dissipation but requires a 135-degree rotation to achieve "full deployment", will continually radiate given amount based on sunlight exposure
Power Consumption	Will not require power, some heat WILL be absorbed into the bimetallic springs which will need to be accounted for to properly dissipate heat ->backup will be installed additionally	Requires power (around 2.5W) for deployment and panel rotation
Volume Budgeting	Will be attached directly the payload, must create internal space within the payload for the louvers to fit	Will fit on the payload externally, probably along the bottom of the payload to fit inside the bus
Mass Budgeting	be a part of the payload itself	Extra pieces required in additon to the full mass of the payload, 0.5 kg per panel (4 panels needed to keep the center of mass stable) meaning that around 2 additional kgs on top of the full mass of the payload will be needed
Dissipation Properties		Vent system can be pointed towards deep space to release heat, easily removing excess heat from the system
Results		

CONSORTIUM FOR SPACE MOBILITY AND ISAM CAPABILITIES

Displacement (mm)

Von Mises Stress (MPa)

Structures System Analysis

Key Features

- M60J carbon fiber frame
- Multiple "shelves" with CF rods
- Telescopic docking arm

Rank Percentage	Characteristics	Aluminum	Steel	Carbon Fiber
0.30	<u>Performance:</u> Ability to withstand forces and vibrations of launch and orbit.	2.00	3.00	3.00
0.10	Performance: Ability to thermally regulate the payload.	2.00	1.00	3.00
0.10	Performance: Ability to withstand radiation.	2.00	2.00	3.00
0.05	Performance: Ability to withstand the impact of micrometeorites and small space debris.	2.00	1.00	2.00
0.10	Performance: Ability to be drilled and shaped without complications.	3.00	2.00	1.00
0.30	Performance: Ability to be minimize overall structure weight.	2.00	1.00	3.00
0.05	Complexity: Ability to be located and purchased for manufacturing.	3.00	3.00	3.00
		2.15	1.90	2.75

Power System Analysis

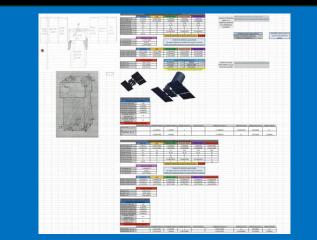
Key Features

- Lithium-ion battery
- 15" copper induction coil

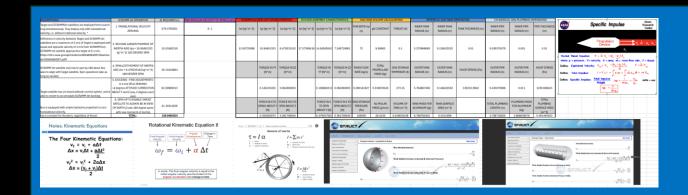
PAYLOA	AD		BUS	
Propulsion	48.0000) Prop	ulsion	0.1000
Attitude Control	0.4300) Powe	er	22.2000
Power	172.2000) <mark>Stru</mark>	cture	0.0000
Structure	0.0000) Ther	mal	2.0000
Thermal	5.0000) Com	ms	5.8000
CDH	1.2000) CDH	[1.2000
Subtotal	226.8300) Subt	otal	31.3000

20% Margin 51.6260 **TOTAL** (Watts) **309.7560**

CO



Propulsion System Analysis


1. THRUSTER SELECTION BY TRADE STUDY

		ENGINE	MANUFACTURER	STATUS	ENGINE MASS (kg)	LENGTH (m)	PROPELLANT	NOMINAL THRUST (N)	SPECIFIC IMPULSE
		SVT01 Solenoid Valve Thruster	AMPAC	Flown on SNAP-1, DMC Alsat, UK	0.002231574	0	GN2	0	0.048689139
OLD GAS		Solenoid Actuated 58E142A Thruster	Moog	Flown on SIRTF/SPITZER	0	0.005048187	GN2	3.7415E-06	0
		Solenoid Actuated 58-118 Thruster	Moog	Flown on SAFER (Shuttle EVA)	0.000382555	0.00192749	GN2	0.000118708	0.057116105
⊢		Liq AOCS thrusters	SEP	geos, exosat, ERS,	0.019382811	0.039926572	Hydrazine	0.000118708	0.647940075
5		MONARC-5	AMPAC In-Space Propulsion	Flight qualified	0.030221882	0.083524553	Hydrazine	0.000152721	0.65917603
4		MONARC-90	AMPAC In-Space Propulsion	Flight qualified	0.062739097	0.128040385	Hydrazine	0.003060885	0.666666667
		MONARC-445	AMPAC In-Space Propulsion	Flight qualified	0.100994644	0.178522258	Hydrazine	0.015135719	0.666666667
E		MRE-0.1	Northrop Grumman	Chandra X-ray Observatory, DSP, STEP 4	0.030859475	0.070674621	Hydrazine	2.68708E-05	0.595505618
ROP		MRE-1.0	Northrop Grumman	Pioneer, HEAO, TDRSS, FLTSATCOM, EOS, SSTI, STEP4	0.030859475	0.076640661	Hydrazine	0.000115306	0.602996255
Ъ.		MRE-5.0	Northrop Grumman	GRO	0.09461872	0.111519045	Hydrazine	0.000952041	0.655430712
MONOPROPELLANI		MR-103G	Aerojet	Flight proven	0.020020403	0.069756769	Hydrazine	6.12245E-06	0.543071161
		MR-111C	Aerojet	Flight proven	0.020020403	0.067921065	Hydrazine	4.38776E-05	0.5917603
		MR-107N	Aerojet	Flight proven	0.046161693	0.088113814	Hydrazine	0.003707144	0.644194757
¥	[CHT-1	EADS Astrium	>500 units flown	0.017470033	0.069297843	Hydrazine	1.05442E-05	0.535580524
2		CHT-20	EADS Astrium	Flight proven	0.024164754	0.079853144	Hydrazine	0.000268367	0.625468165
		Aestus	EADS Astrium	Ariane 5 upper stage	0.700331548	1	NTO/MMH	1	1
		S400-12 (-15)	EADS Astrium	>60 missions flown	0.228513134	0.221202386	NTO, MON-1, MON-3 and MMH	0.014285379	0.97752809
⊢		10 N Bipropellant Thruster	EADS Astrium	>90 spacecraft have these thrusters	0.021296588	0.048187242	NTO, MON-1, MON-3 and MMH	0.000339796	0.876404494
BIPROPELLANI		Unified Propulsion System - Apogee Kick Engine	Japan IHI company Itd	provides GEO insertion and attitude/orbit control for 2t-class satellites	1	0.463056448	NTO/Hydrazine	0.057822809	0.990262172
Ē		R-40	Aerojet	Flight proven (Space Shuttle)	0.432542719	0.244607618	NTO (MON-3)/MMH	0.131632358	0.838951311
Ő		HIPAT	Aerojet	Apogee thruster Flight Proven	0.330527927	0.278568151	NTO (MON-3)/MMH	0.015135719	0.985018727
IPR		R-1E	Aerojet	Flight proven (Space Shuttle)	0.126498342	0.133547499	NTO (MON-3)/MMH	0.003775171	0.835205993
Β		5lb Cb	AMPAC In-Space Propulsion	Flight qualified	0.051262433	0.089490592	NTO/MMH	0.000747959	0.883895131
		LEROS LTT	AMPAC In-Space Propulsion	Flight qualified	0.037235399	0.114272602	NTO/MMH	0.000305782	0.812734082
		TR-308 Dual Mode Liquid Apogee Engine	Northrop Grumman	Flown on Chandra X-ray Observatory	0.302473859	0.314364387	NTO/N2H5	0.016054087	0.992509363

2. THRUSTER PLACEMENT ANALYSIS, THRUST & TORQUE OUTPUT

3. SPHERICAL GN2 TANK MASS & VOLUME CALCULATION

Thruster Image: Nammo (U.K.) Ltd., Spacecraft Cold Gas Thruster Valve - 10mN to 100mN Thrust, image from datasheet, Mar. 2021. Accessed: Apr. 10, 2025. [Online]. Available: https://www.nammo.com/wp-content/uploads/2021/03/2021-Nammo-Cheltenham-Spacecraft-Cold-Gas-Thruster-Valve.pdf

2.3 DATA HANDLING & COMMUNICATIONS

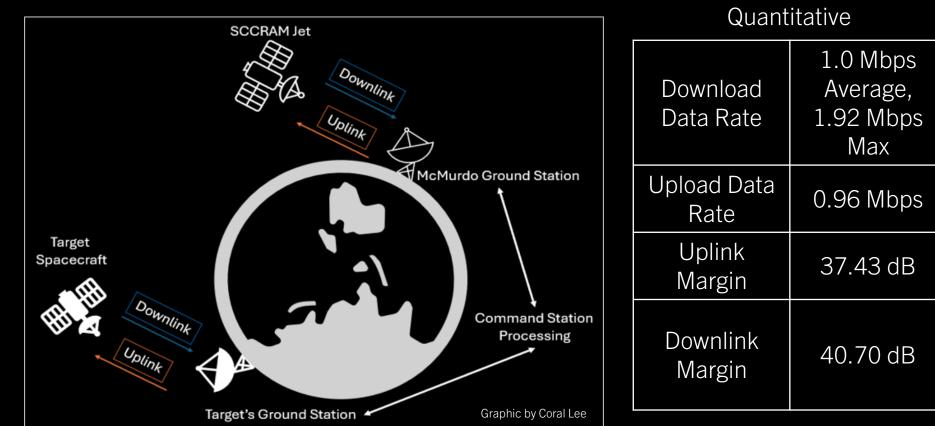
Command & Data Handling

Criterion	PC-104	Backplane						
Size	Compact in size due to configuration standardization	Larger size to accommodate adaptable integration						
Weight	Lightweight due to compact configuration	More weight due to larger configuration		Code packa	ge		Rendezvous maneuvers	
Power Draw	Power distribution across individual components constrained due to small size configuration	Centralized power distribution across components	Communicatio	INS Craft state		ain Computer	Orientation/ Docking	Attitude/Orbit
Signal Integrity	Constrained bandwidth and lower signal integrity	High bandwidth and better signal integrity				Payload status	Payload/Docking commands	
Expandability/ Flexibility	Stack height limitations and rigid	Flexible configuration and					/	1
Plexionity	modularity	able to be expanded due to larger configuration size						
Cost	Lower component and configuration cost	Higher component and configuration cost		Powe	er		Payload	
Complexity	Standardized and modular design	Higher complexity due to flexible configuration						
Overall Performance	Limited in performance due to	Increased performance based on				γ <u></u>		
1 erformanee	size, power, and bandwidth constraints	power distribution, flexibility, and better				Charge/Power status		
		signal integrity						
Results	3	5					G	raphic by Christian Bouarouy

MASS BUDGET

Expected Mass & Bill of Materials

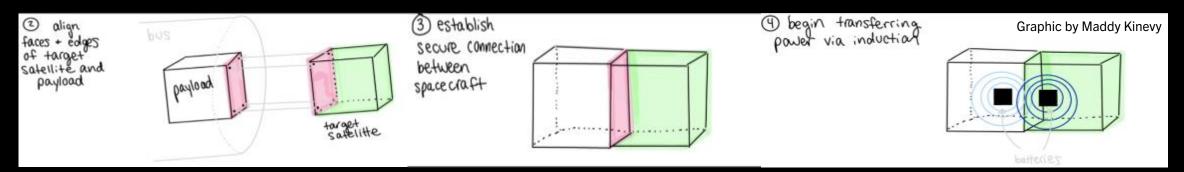
	Propulsion Holding thrusters (x8)		Propulsion	Propulsion	11.3951
	Activaitng thrusters (x4)		Undraging throughout	1 i opuision	11.3731
	Gas N2 tank		Hydrazine thrusters		0 1 0 0 0
	Plumbing Attitude Control		Power	Attitude Control	0.1090
	Star trackers (x2)				
	Sun sensor		Primary battery Downer		2 5562
	Power			Power	3.5563
	Induction coil		Structure		
	Inverter (DC to AC) Rectifier (AC to DC)		A 1	Star atraca	7 0120
	Secondary battery	7	Aluminum alloy structure	Structure	7.9138
	Wiring	BUS	Thermal		
ΧI	Structure	\mathbf{i}	1 ner mai	Thornsol	1 2164
A	Shell	\sim	Radiators (active)	Thermal	1.2164
	Levels (x4)		Radiators (active)		
	Rods (x4) Screws (x8)		Comms	CDH	1 0100
	Telescopic arm			CDH	1.0100
	Thermal		Antenna		
	Louvers		Software designed radio	20% Margin	5.0401
	MLI covering		Software designed faulo	20 /o Margin	5.0401
	Active Control Backup		CDH	C	
	CDH On-board computer			TOTAL (kg)	30.2407
	Wiring		On-board computer	IUIAL (Kg)	30.2407



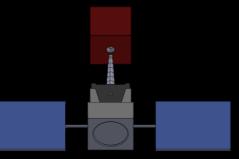
2.3 DATA HANDLING & COMMUNICATIONS

Communication Architecture & Communication Concept of Operations

- Store & Forward: 1 pass every 90min available
- S-Band
- Pass 1: Downlink
 - Orbital information from SCCRAM Jet & Target Satellite
 - Power Status of Target Satellite
- Pass 2: Uplink
 - Orbital Transfer
 Commands
 - o Docking Commands
 - o Charging Commands
- Pass 3: Verification



3.1 INNOVATIVE CONCEPTS



Top Three Innovations

- Induction Charging
 - o Using principles of induction to wirelessly charge a target satellite from a close distance

- Telescopic Arm and Probe Docking
 - o Using a telescopic arm to safely dock with and make contact with the target satellite

Graphic by Aidan McGrath

• Magnetic Docking

• Using a series of magnets to dock face-to-face with the target satellite

1.5 RISKS Risks to Mission Success

	SCCRAM Jet Mission Risks							
	Risk	Mitigation Strategy						
Docking	1. Docking arm connection	Propellant reserve for additional ΔV maneuvers.						
Doc	2. Docking arm extension	Spin satellite to induce a radial acceleration of telescopic arm.						
Power	3. Induction coil EM field	Ensure high magnetic permeability and shielding in the target satellite.						
H	4. Distance between coils	Explore using resonant inductive coupling.						
Thermal	5. Eclipses and solar flares	Incorporate active control backup for louver system.						

	Unlikely	Negligible	Minor	Moderate	Significant	Severe
	Very				1	↓ 5
Prol	Unlikely			4	1, 2, 3	
Probability	Possible			4 ▲	2, 3	5
ty	Likely					
	Very Likely					

Risk Level	Acceptable	Watch	Unacceptable
------------	------------	-------	--------------

3.2 TECHNOLOGY GAP ASSESSMENT

Gaps in ISAM Technology

- Compact and low-weight electric propulsion
 - o Offers very high specific impulse
 - Enables servicing of multiple satellites per SCRAMM Jet mission
- More power and energy dense batteries with higher discharge rates
 - o Demand less docking time with SCRAMM Jet satellite
 - More efficient power transfer and discharge rate
- Nickel-Hydrogen battery that can withstand space environments

 Better fit for mission
- Universal docking mechanisms for small satellites
 - o Enable servicing of satellites regardless of origin or maker

3.3 BIGGEST CHALLENGES ENCOUNTERED

Hardest Issues to Solve

- Developing a feasible docking solution
 - o Multiple iterations over the course of the year
- Developing a low-mass propulsion system with enough ΔV for attitude control & docking
 - o Thorough research and analysis required for a suitable propulsion solution
- Initial payload requirements
 - $\circ~$ Defining the purpose of the mission

4.1 PAPER SCRAMM Jet White Pages Details

SCCRAM Jet Final Report Aspects				
Abstract Length	200 words			
Paper Length	19 pages			
Number of References	27			

Publishing at AIAA SciTech Conference, January 12-16 2026 in Orlando, FL

LESSONS LEARNED

Key Knowledge Gained For Future Careers

- A thorough process is required to create a successful engineering design
 - \circ In-depth analysis
 - o Integrated research
- Collaboration between subsystems
 - o Interwoven challenges
- Extracting pertinent information
 - $\circ~$ Condense key points for team comprehension

1.6 PATH TO PDR

BCT X-Sat Bus Integration

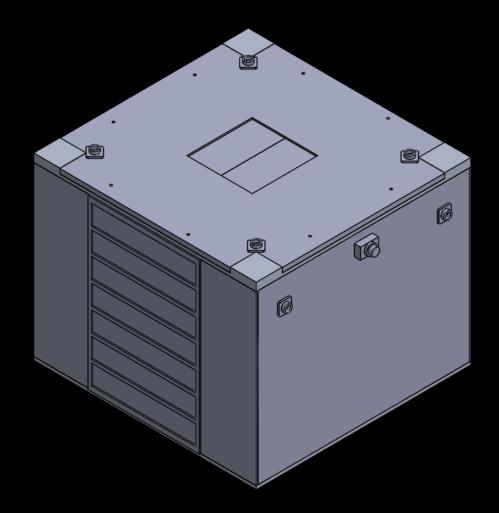
	BCT Venus Class X-Sat Bus – Subsystems Verification					
	Components	Verification				
STRUCT	Aluminum alloy 6061 frame	BCT Metal Procurement Standards; launch load analys via SOLIDWORKS Simulation				
Lithium-ion battery		BCT Venus Class X-Sat Bus datasheet; Ibeos B28 28- Volt Modular Battery datasheet; power budget analysis				
POV	Dual solar array	Cosmic Capstone Request for Proposal; BCT Venus Class X-Sat Bus datasheet				
THERM	MLI Blankets, Deployable Radiator	Emissivity calculations; heritage systems				
PROP	Additional thrusters	BCT X-Sat Venus Class Bus data sheet; torque equalization analysis				
CDH	On-board computer	Analysis on backplane integration and component configuration for mission requirements				
COMMS	Store & Forward; S-band	Link budget analysis				

1.6 PATH TO PDR

Future Work

Future Work						
	SCCRAM Jet Payload	BCT X-Sat Venus Class Bus				
STRUCT	Additional FEA analysis with all CAD internals	Research into in-orbit torque(s) on solar arrays				
POWER	Improving coil efficiency, real-life power transfer verification	Confirmation of dual solar arrays and battery details				
THERM	Thermal Analysis using CAD software	Thermal Analysis using CAD Software				
PROP	ADCS Design, Docking Simulation	Confirmation of Thruster placement, ADCS Design, Docking Simulation				
CDH	OpenC3 Cosmos application analysis	OpenC3 Cosmos application analysis				

SUMMARY/CONCLUSION/HIGHLIGHTS


Summary of SCRAMM Jet Mission

<u>Key Takeaways</u>

- Functioning satellites often decommission due to power depletion
- Close-contact induction charging offers a safe method of power resupply

Impacts to ISAM

- Increased servicing to decommissioned satellites
- Reducing space debris
- Saving money, resources, and labor

QUESTIONS

Questions?

SCCRAM Jet

POTENTIAL TARGET MISSION: LANDSAT NEXT

NASA's Landsat Next

Purpose: Earth observation and monitoring

Expected Launch: 2031

Orbit: SSO at 653 km altitude

Status: Concept and technology development

Lifespan: 5 years, due to power depletion

BACK UP SLIDES

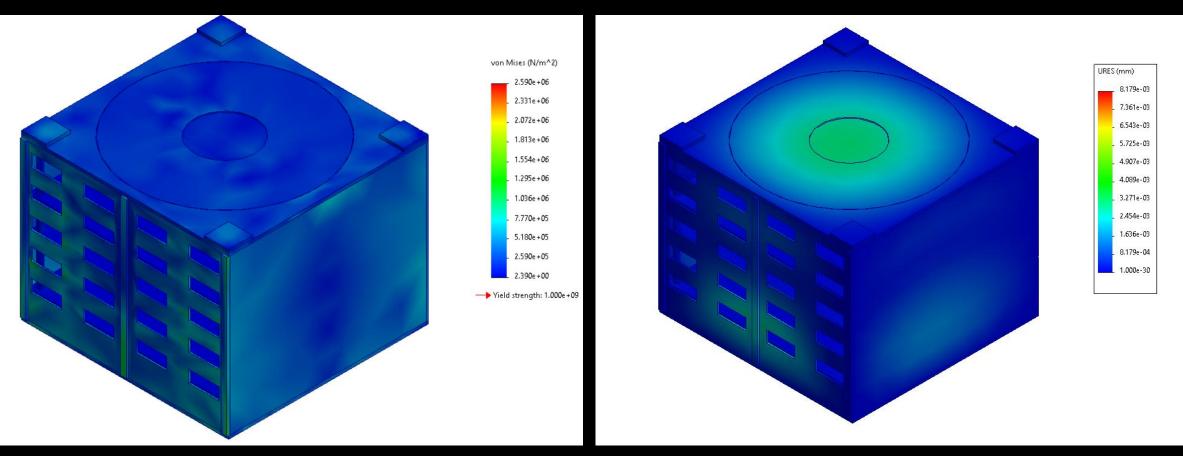
-CONCLUSION -> take away and impact

AUTONOMOUS COMMANDS

1. Attitude data is sent to ground.

2. Payload docking probe enters the target socket.

3. Target satellite socket fastens the probe.


4. Telescopic probe arm is retracted.

5. Inductive charging initiates.

FEA ANALYSIS

Von Mises Stress (MPa)

Displacement (mm)

FEA ANALYSIS

URES (mm)

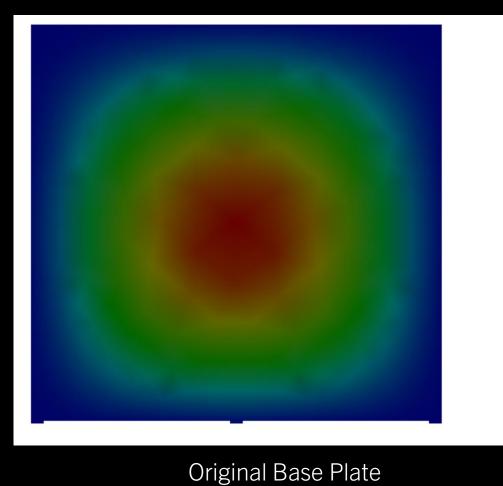
4.823e-03 4.341e-03

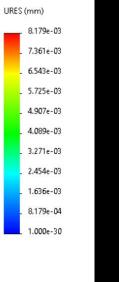
3.858e-03

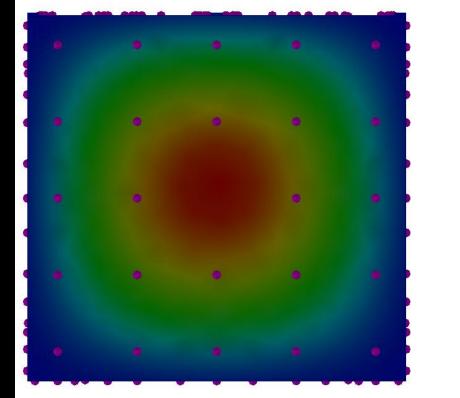
3.376e-03

2.894e-03

2.411e-03


1.929e-03


1.447e-03


9.646e-04

4.823e-04

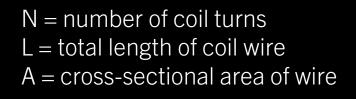
1.000e-30

Thickened Base Plate

INDUCTION COIL DESIGN

SCCRAM Jet Mission - Induction Coil

Outer Diameter (in)	15
Inner Diameter (in)	4
Number of Turns	11
Length of Coil (in)	323.2
Wire Thickness (in)	0.1



INDUCTION CHARGING CALCULATIONS

$$L = \frac{0.5\pi N (d_o - d_i)}{1000}$$
$$R = \frac{\rho L}{A}$$
$$V = \sqrt{PR}$$
$$I = \frac{V}{R}$$

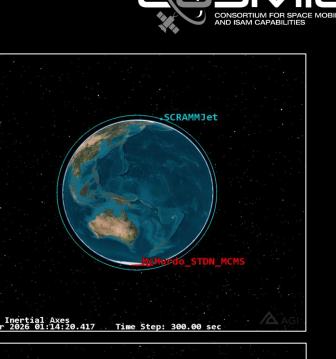
Q = It

 $d_i =$ inner diameter $d_o =$ outer diameter

- R = resistance
- ρ = resistivity
- I = current
- V = voltage
- Q = battery capacitance
- t = time

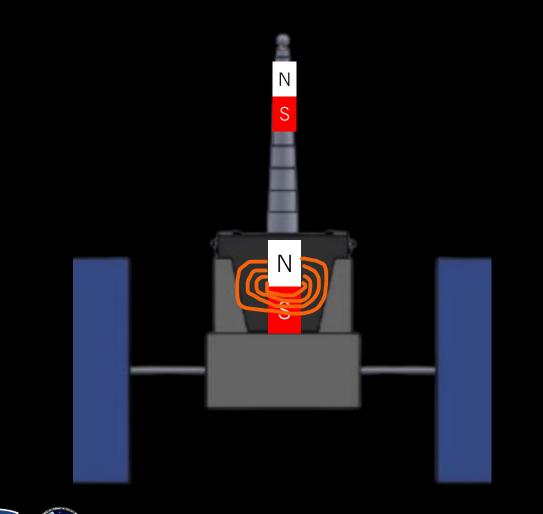
LAUNCH VEHICLE

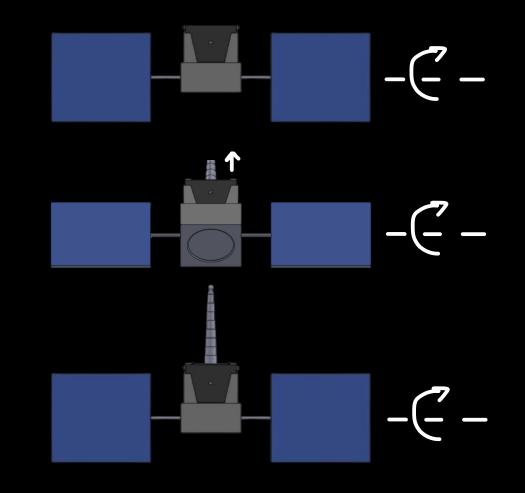
- Rocket Lab's <u>Electron Rocket</u>
- Capability to deliver a 200 kg payload to a 500 km altitude circular Sun-Synchronus Orbit (SSO) (Rocket Lab)
- Large fairing to support both SCRAMM Jet and demonstrative target satellite
- Launch would take place from Launch Complex 1 on New Zealand's Mahia Peninsula

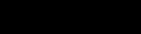

Rocket Lab, "Rocket Lab Successfully Launches 30th Electron Rocket & 150th Satellite to Space," Rocket Lab, Sep. 15, 2022. (Dnline). Available: https://www.rocketlabusa.com/updates/ rocket-lab-successfully-launches-30thelectron-rocket-and-150th-satellite-tospace/.

ORBITAL ANALYSIS

- Orbit is a <u>500 km altitude SSO</u> (per Electron launch)
 - Constant solar flux
 - Only 1 ground station
 - A common orbit for Earth observation missions
- Must be during an equinox most frequent ground station contact for SSO




TELESCOPIC ARM EXTENSION



"Solenoid" extension:

Spinning extension:

GROUND STATION-MCMURDO

- Located in the Arctic, conducive to polar orbit
- Owned by National Science Foundation
- S & X-Band capabilities
- 10 meter diameter
- 150 meter altitude
- 200 Watts

THERMAL TRADE STUDY FOR BUS

Bus Analysis						
Characteristics	Louvers (FFTC)	Deployable Radiators				
Complexity	Passive, operates with bimetallic springs which <u>expand</u> and contract based on the internal temperature of the bus, will be built directly as a part of bus. Since the bus is small, an entirely different model of louver would have to be adopted to properly dissipate excess heat	Passive, requires deployment, one of the bus faces will have to be a radiator				
Reliability	Operate based on thermodynamic principles and entropy, could encounter issues with sudden temperature changes i.e eclipses	Max heat loss: 2.75 W at 90deg, will continue to dissipate heat at a constant level, can reduce internal temperatures by around 50 C with the proper rotation				
Efficiency	Responds to the internal payload temperature, could have interference when inside bus	Can be actively rotated, changing the total amount of heat dissipation but requires a <u>135 degree</u> rotation to achieve "full deployment", will continually radiate given amount based on sunlight exposure				
Power Consumption	Will not require power in principle, some heat WILL be absorbed into the bimetallic springs which will need to be accounted for to properly dissipate heat	Requires power for deployment and panel rotation				
Volume Budgeting	Less space will be able to be used for the louvers (bus is small) which will lead to less emittance	As the bus is smaller, the deployable radiators would have to sit along the outside, being attached as one wall of the bus				
Mass Budgeting	With the bus a lot smaller, smaller louvers would need to be used, meaning less mass would be a positive.	The deployable radiators will still be more massive as each panel holds a decent amount of mass, with 4 total panels the mass of the deployable radiators will exceed that of the louvers.				
Dissipation Properties	Dissipates heat directly through the louver flaps, could run into issues when conducting control volume analysis	Vent system can be pointed towards deep space to release heat, easily removing excess heat from the system				
Results						

POWER TRADE STUDY FOR BUS Battery Characteristics

Characteristics	Lithium-lon	Nickel- Cadmium	Nickel-hydrogen	Silver-Zinc	Energy Density (Wh/kg)	150-300	50-80	140	100-150
DOD	80-95%	80%	35-40%	80%	Specific Energy Density (Wh/kg)	150-250	20-40	140	100-150
Discharge Rate (A/in^2)	0.1-1	0.1-0.5	0.1-0.5	0.13-0.21	Power Density (W/kg)	250-700	150	220	100-600
Ability to Deep Discharge	Yes	Yes	Yes	Yes	Specific Energy (Wh/kg)	150-250	40-60	55-60	100-150
Over Discharging Potential	significant	relatively low	very low	relatively low	Cycle Life (years)	5		30	2
Discharge Temp (deg F)	-4 to 140	-4 to 149	32-113	-4 to 140	Degredation Rate (cycles)	2,000	400-1000	30,000	150-300
Discharge Safety	safe	safe	safe	safe	Service Life (years)	2 to 3	5 to 10	30	2-2.5
Charge Rate	0.2C-1C	C/10	C/10	0.2C-4C	Operating Life (years)	5 to 10	8 to 25	30	1
Over Charging Potential	low	relatively high	realtively low	high	Thermal Stability	No	Yes	Yes	Yes
Charge Temp (deg F)	32-113	32-113	50-86	-4 to 141	Operating Temp Range				
Charge Safety	safe	safe	safe	safe	(deg F)	59-95	-4 to 158	-4 to 158	131
Time Necessary to Charge	1 to 4 hrs	66 mins	12 to 14 hrs	6 to 8 hrs	Maintenance Requirements	very few	very few	very few	a few
Voltage Necessary to Charge (V/cell)	4.2	1.55	1.25	1.6	Internal resistance (Ohms)	0.01-0.05	0.155	0.05	10
Nominal Voltage (V/cell)	3.7	1.2	1.25	1.65	Vibration Resistance	low	high	high	moderate
Capacity (Ah)	50 to 10,000	1 to several 100	10 to 50	4.4 to 40	Radiation Tolerance	limited	limited	good	No info
Energy Efficiency	80%	70-80%	85%	80-90%	Leakage Potential	low	moderate- high	low	moderate
					Total Numerical Trade Study Score	58	65	45	64