

COSMIC Capstone Challenge: Final Briefing

Orbital Catch & Release Tri-State Horizon, The Pennsylvania State University

Students: Ashley Loftis, Wesly Green, Rachael Krugh, Brandon Gero, Lyze Glenister, Braden Johnson Advisor: Professor Sara Lego Mentor: Brian Holt

April 14th, 2025

Executive Summary

- Problem Identified: space debris collisions with spacecrafts
 - Previous attempts have shown it is difficult to not damage the debris
- Proposed Capability: 3 Catch & Release operations
 - 1. soft capture
 - 2. hard capture
 - 3. release
- How it solve the problem: removes debris to prevent future damage to spacecraft
- Current Status: proof of concept

2.4 Systems Engineering Milestones

Orbital Catch & Release

Mission Operations Selection October 7, 2024 Trade Studies Completion February 10, 2025

Preliminary Design Review April 1, 2025

September 13, 2024 Program Manager Selection October 16, 2024 System Requirements Definition March 19, 2025 Conceptual Design Completion

Tri-State Horizon

3.1 Innovative Concepts

Concepts 1 and 2

- Future release to a third-party in-space recycler
- The three initial concepts had the same base design each with a hard-capture system, robotic arm(s), and an end-effector

Concept 1

- End-Effector Inflatable pneumatic fingers
- Soft Capture Inflatable pneumatic arms
- Hard Capture Cage arms

Concept 2

- End-Effector Magnet
- Soft Capture Canadarm
- Hard Capture Crab Claw

3.1 Innovative Concepts

Concept 3 and Trade Study

Concept 3

- End-Effector Gecko Grippers
- Soft Capture Robotic Arms
- Hard Capture Multi-pin Pressure Sensor Chamber

Trade Study

- Assessed Each Component by: Functionality, Reliability, Cost, Complexity, Manufacturing Difficultly, Power consumption, Technology Readiness, Mass
- Down-selected and Combined Based on Results
- Final Design: Concept 3

2.2 Storyboard of Complete Operation

Macro-Level Mission Architecture

CONSORTIUM FOR SPACE MOBILITY AND ISAM CAPABILITIES

Micro-Level Mission Architecture

CAD Animation of soft capture

Micro-Level Mission Architecture

CAD Animation of Hard Capture

Micro-Level Mission Architecture

Front, Bottom, Side, and Isometric View of Payload

3 System Decomposition

BCT X-Sat Venus Class Bus and Payload Subsystem breakdown

Launch Vehicle

	Criteria		Launch Vehicle			
Requirement	Weight	Goal	SpaceX Falcon 9	Northrop Grumman	Northrop Grumman	
		0.000	Specific models	Antares Rocket	Pegasus	
Cost per kg	15%	Min	\$2720/kg	\$1340/kg	\$126410/kg	
		Normalized	0.989	1	0	
Reliability	15%	Max	99.34%	94.44%	89%	
		Normalized	1	0.526	0	
Payload Fairing		Max	2 7 m	2 0 m	1.27 m	
Diameter	35%	IVIAX	5.7 111	5.9 m	1.27 111	
		Normalized	0.924	1	0	
Vibrational		Min	4.07 mm	4.07 mm	0.175 mm	
Displacement	35%	IVIIII	4.97 11111	4.97 11111	0.175 IIIII	
		Normalized	0	0	1	
Tota	ıl		2.913	2.526	1	

Orbital Analysis

Target, Initial, and Final Orbit

- Target Debris Orbit (used for power, thermal, and communication systems development)
 - Apogee altitude 611.991 km
 - Perigee altitude 592.633 km
 - Semi-major axis 6,980.449 km
 - Eccentricity 0.0013866
 - Inclination 53.0056°
 - RAAN 30.7335°
 - Arg. of periapsis 93.8789°
 - Orbital period 96.74 mins
- Initial Orbit used for Calculations
 - Coplanar with Target Debris Orbit
 - Circular 550km orbit
- Final Orbit
 - Coplanar with Target Debris Orbit
 - Circular 510km orbit
- Orbital Transfer Delta V Requirements
 - Initial Orbit to Target Debris orbit: 77 m/s
 - Target Debris Orbit to Final Orbit: 150 m/s

Tri-State Horizon

2.3 Comms and Ground System

- Real time downlinks not needed because the mission is autonomous, but are wanted in the event the autonomy fails, and manual override is necessary
- Trade study done to determine ground system based on: G/T, bandwidth, coverage, and # of locations
- Could require an observer, although the ground system chosen features a POCC, SOCC, and MCC with remote access
- Communications system requires S-band characteristics to communicate with the ground system
 - Will receive and transmit data with ground system at a rate between 1-5 Mbps
 - Operates between a frequency of 2025-2120 MHz uplink and 2200-2290 MHz for downlink
- Links budgets performed from bus to ground stations using 2.5W for uplink, 30W for downlink:
 - La Paz, Mexico (3.7m antenna diameter): uplink 8.02 dB, downlink 8.13 dB
 - Plana, Bulgaria (4.5m antenna diameter): uplink 10.03 dB, downlink 15.91 dB
 - Jeju, South Korea (3.9m antenna diameter): uplink 8.98 dB, downlink 7.96 dB

BCT X-Sat Venus Class Bus and Payload Subsystems M CAPABILITIES

Thermal – Payload and Bus

- Internal Temperature between -19°C : 40°C
- Tempco Silicon Heater attached using pressure sensitive adhesive (PSA)
 - Heritage study from COMPASS-1 Cubesat
 - Area: 128.8 in^2 , watt density: 0.5 $\frac{W}{in^2}$, raise temperature max 20 $\frac{c}{min}$
- Using 4 Gold Chip Thermistors from TE Connectivity
 - Trade study done based on: resistance provided, min temperature, and reliability

BCT X-Sat Venus Class Bus	Payload
 Radiative Heater Transfer Analysis:	 Radiative Heater Transfer Analysis:
3.46°C	20.68°C Louvers: 50% efficiency

BCT X-Sat Venus Class Bus and Payload Subsystems

Guidance Navigation and Control - Bus

BCT FLEXCORE with 4 RW8 Reaction wheels

- pointing accuracy of ±0.002 deg
- .6 Nm of torque from each reaction wheel
- Selected Through Comparison with other BCT solutions
 - **XACT-50**
 - **XACT-100**

			the second se		
Criterion	Weight	Goal	XACT-50	XAcT-100	FLEXCORE
		Min	0.003	0.003	0.002
Pointing Accuracy	0.6	Normalized	0.666667	0.666667	1
		Max	0.05	0.1	8
Momentum	0.4	Normalized	0.00625	0.0125	1
total			0.4025	0.405	1

BCT X-Sat Venus Class Bus and Payload Subsystems True FOR SPACE MOBILITY

Command and Data Handling – Payload and Bus

Computers with high data storage volume required due to the autonomy of the mission

BCT X-Sat Venus Class Bus and Payload Subsystems THE ADDRESS OF TH

Tri-State Horizon

Power – Payload and Bus

- 6 x 2P8S & 3 x 1P8S batteries
- Total battery capacity on board: 1188Wh / 40.8A
 - Enough power for Δv maneuver and attitude control
 - A Δv of ~ 450m/s can be fired for 1 hour

BCT X-Sat Venus Class Bus and Payload Subsystems True For Space MOBILITY

Propulsion - Bus

ORBION Aurora Thruster System

- Dual-Mode Single System Propulsion
 - Cold Gas Attitude Adjustment System
 - Compressed Xenon Gas propellent
 - Hall Effect Propulsion System for Orbit Transfer System
- 6 Thruster design
 - 6 x 2mN 6 x 2000mN
 - Automatic 3-axis control
 - BCT "FLEXCORE" module
 - 2 sensors

Electric Propulsion + Cold Gas

ORBION Space Technologies, "Dual-mode propulsion from a single system" <u>Orbionspace.com</u>

BCT X-Sat Venus Class Bus and Payload Subsystems Title FOR STARE AND INTERPORTED AND INTERPORT

Structures – Bus and Payload

- BCT X-Sat Venus Class Bus
 - Estimated dimensions:
 - 50cm x 50cm x 35 cm
 - wall thickness of 0.25 cm
 - Material: Aluminum 6061
 - Fundamental frequency:
 - Lateral: 14.0 Hz
 - Axial: 18.3 Hz
 - Moments of inertia:
 - xy-plane: 4.7E-05 m⁴
 - Axial: 8.0E-05 m⁴

- Payload
 - Dimensions:
 - H: 50.8cm, Ro: 23.91cm, Ri: 23.66 cm

- wall thickness of 0.25 cm
- Material: Aluminum 6061
- Fundamental frequency:
 - Lateral: 5.19 Hz
 - Axial: 7.35 Hz
- Moments of inertia:
 - xy-plane: 0.0017 m⁴
 - Axial: 0.0034 m⁴
- Critical load: 39.2N

BCT X-Sat Venus Class Bus and Payload Subsystems M CAPABILITIES

Optical Tracking – Payload

- Used to Guide Rendezvous, Capture, and Release Operations
- Obruta Rendezvous, Proximity Operations, and Docking (RPOD) Kit
 - Determines target distance
 - Tracks relative orientation and rotational velocities if loaded with model of target
 - 1% Error

Mass Budget

Payload and Bus with components

System	Subsystem	Component	Mass (kg)	Percentage
BCT X-Sat Venus Class Bus	Communication	Patch Antenna	0.075	0.11%
	Power	6x Batteries	8.15	11.65%
	GNC	FlexCore, 4x RW8, 2 NST	17.0	24.30%
	C&DH	Computer	5.0	7.15%
	Propulsion	Orbion Aurora Thrusters	14.5	20.72%
	Thermal	Thermistors	Negligible	0%
	Reserve	-	3.5	5%
		Total:	48.225	68.92%
Payload	C&DH	Transceiver and Computer	5.19	7.42%
	Structure	Primary Structure, Gecko	10.88	15.55%
		Grippers, Robotic Arms,		
		Pressure Chamber &		
		Sensors		
	Thermal	Heater and Thermistors	0.175	0.25%
	Optical Tracking	Obruta RPOD Kit	2.0	2.86%
	Reserve	-	3.5	5%
		Total:	21.745	31.08%
		Total Mass:	69.97	100%

Power Budget

CONSORTIUM FOR SPACE MOBILITY AND ISAM CAPABILITIES

Payload and Bus

Subsystem	Average Nominal Voltage (V-DC)	Total Peak Wattage (W)
Communication	28	22.75
C&DH	12	12.60
Propulsion + AOCS	28	840.0
Thermal	12	45.08
Optical Tracking	12	20.3
Reserve	-	403.17
Total Peak Power:	1343	9.9 W

1.5 Risks

Risk Mitigation Matrix

Risks	Pre-Mitigation	Mitigation Strategy
1. Launch Window Miss	 Launch Window From Cape Canaveral, FL on [TBD] Next Window on [TBD] 	Wait until next windowDetermine new launch site
2. Gecko Gripper Technology Delay	Current Technology Readiness Level of 6	Switch to Magnet end-effectors
3. Pin Pressurization Failure	Each Pin is individually pressurized	 If in Hard-Capture: death code programmed to override pressure sensor failure If out of Hard-Capture: cancellation of Release Stage
4. Initial Rendezvous with Debris Miss	 Pre-launch calculations to complete initial rendezvous 	 Enough fuel on-board to make 1 maneuver to realign
5. Cause Damage to Debris	 Precise attitude adjustment system to avoid damage 	Reevaluate to determine if mission can be continued or if total mission failure
6. Autonomy Failure	 Potential for autonomy to fail during Capture and Release Stages 	Continuous communication with Ground System for Manual Override

1.5 Risks

Risk Mitigation Matrix Cont.

	Very Likely					
Ž	Likely	2. 🗲		<u> </u>		6.
abilit	Possible		1.◀	1.	4.◄	<u> </u>
roba	Unlikely				3. ◄	─ 3. 5.
ш.	Very Unlikely					
		Negligible	Minor	Moderate	Significant	Severe

Likeliness

Risk Level: Acceptable Watch Unacceptable

3.2 Technology Gap Assessment

- Gecko Grippers completion
 - Increase mission confidence and allow the mission to proceed as planned
- The development of an in-space Recycling Station
 - Make this mission more impactful and increase the reusability of the debris
- Magnetizing debris
 - Allow for the possibility of utilizing magnets in the capture system

3.3 Biggest Challenges Encountered

- Integrating the Payload with the BCT X-Sat Venus Class Bus
 - Needed more information
- Accessing detailed information about each subsystem and system
 - Had to reach out to companies and select new mechanisms when needed information couldn't be found
- Having limited mass and power for the Payload design
 - Had to reduce FOS and make sacrifices to ensure we had enough power

Lessons Learned

- How much space debris there is and how new ISAM capabilities will be able to mitigate it
 - Catch & Release payload for mitigation
- Why finding and planning for risks is important
 - Prevent mission failures and have redundancy measures
- How critical Systems Engineering is to a mission to ensure all parts will work together
 - Ensuring integration and that budgets for mass and power are met for the mission

4.1 Paper

CONSORTIUM FOR SPACE MOBILITY AND ISAM CAPABILITIES

Tri-State Horizon

- Formatted according to IEEE Aerospace Conference in Big Sky, MT March 1-8th, 2026 for publishing
- Abstract length: 160 words
- Paper length: 20 pages
- Number of references included: 33

1.6 Path to PDR

X-Sat Venus Class Bus Integration Work Completed

- Total Mass and Power Budgets
- Orbital Analysis
 - STK analysis
- Communication Subsystem
 - Link budgets from BCT PCB Patch Antenna to ground station
- Thermal Subsystem
 - Radiative heat transfer analysis and needed thermal control systems
- Guidance, Navigation, & Control (GNC) Subsystem
 - ADCS trade study

- Structure Subsystem
 - Structural load analysis and materials trade study
- Communication & Data Handling (C&DH) Subsystem
 - Need computer size, mass, and power
- Propulsion Subsystem
 - Thruster trade study and needed lsp calculations
- Power Subsystem
 - Needed additional batteries and calculated solar panel area

1.6 Path to PDR

Future Work / Next Steps

- Increase payload/host spacecraft size scale
 - Mission overview could include larger debris and larger FOS with systems
- Payload mission requirements developed with host S/C design
 - Better payload subsystem integration
- Allow for higher power generation.
 - Allow longer missions and reduce the amount/size of needed batteries
- Explore combining magnets and gecko grippers as end effectors
- Complete a cost analysis
- Finalize Launch Window

Summary/ Conclusion/ Highlights

- Catch and Release: Navigate and rendezvous with selected debris
 - Soft and hard capture features used to catch
 - Releasing debris is the final stage
- Innovative because it tackles the looming debris congestion issue in LEO
 - Soft and hard capture designs can handle irregular shaped debris
 - Release of debris to graveyard orbit or future in-space recycler
- ISAM Impacts:
 - Debris removal
 - Space situational awareness
 - Sustainability

Questions

Orbital Catch & Release

Questions?

Backup Slides

Top-Level Requirements

R1	The payload shall de space	monstrate the capture of e debris.	RFP	
Req Num	Requirement	Rationale	Source	Verification
R1.1	The payload shall demonstrate soft capture and hard capture capabilities	Soft capture allows for an increase of control during hard capture. Hard capture stabilizes the debris.	Mission Object 1	Confirmation checks
R1.2	The payload will not damage debris during capture.	Payload will not damage space debris during capture to prevent further debris.	UNOOSA Space Debris Mitigation Guideline	Sensor Confirmation
R1.3	The payload shall capture space debris within a 300-500lbs. weight range.	Debris within weight range will be manageable to capture	ESA's Annual Space Env. Report - 2023	Testing
R1.4	The Payload shall capture space debris within 0.5-1.5 meters wide.	Debris within width range will be manageable to capture	ESA's Annual Space Env. Report - 2023	Testing

R2	The payload shal	ll integrate with the BCT X enus Class bus.	-Sat RFP	
Req Num	Requirement	Rationale	Source	Verification
R2.1	The payload shall survive the LEO spa environment.	For the mission to be considered successful th payload must be able to operate in LEO.	e _{R2}	Testing
R2.2	The payload shall be less than 17" x 16.4" 27" dimensions.	The bus allocates a spect volume to the payload.	ific R2	Design Consideration
R2.3	The payload shall w less than 70kg.	eighThe bus allocates 70kg c weight to the payload.	of R2	Design consideration
R2.4	The payload shall require less than 444 of power.	The bus allocates only 4 of power to the payload.	44W R2	Design consideration
R2.5	The payload shall be compatible with UA for data transmission	e UART allows the payloa RT communicate with the bu n with ground control.	ad to us and R2	Design consideration
R3	The payload shall d space	emonstrate the release of e debris.	RFP	
Req Num	Requirement F	Rationale	Source	Verification
	т	Damage to space debris	UNOOSA	

Damage to space debris

during release should be

Extra force added to the

debris should be avoided

during release, so that it

stays on track to its

destination.

debris.

avoided to prevent further

Sensor

Analysis

Confirmation

Space Debris

Mitigation

Guidelines

R3

Payload shall not

during release.

The release

m/s to debris

velocity.

damage space debris

procedure shall not

add more than TBD

Tri-State Horizon

KJ.		R3	•	
-----	--	----	---	--

R3.1

Completed Trade Studies

- Launch Vehicle
 - SpaceX Falcon 9 Rocket launched out of Cape Canaveral, FL
- Ground Station
 - Leaf Space locations in La Paz, Mexico, Plana, Bulgaria, and Jeju, South Korea
- Structure Subsystem Material
 - Aluminum for the Payload and Bus
- Thermal Subsystem Thermistor
 - TE Connectivity Gold Chip Thermistor
- Guidance, Control, & Navigation (GNC) Subsystem System
 - BCT FLEXCORE ACDS Solution
- Command & Data Handling (CDH) Subsystem Transceiver
 - SRS-3 Transceiver
- Propulsion Subsystem Design
 - Orbion Technologie's Thruster configurator for a Hall effect & cold gas Aurora thruster system

Ground Station Trade Study

Criteria	Goal	Weight	Leaf Space	AWS	Atlas Space Op
G/T	Max	20%	13.75	16	20.5
	norm		0	0.333333333	1
Bandwidth	Max	25%	50	54	54
	norm		0	1	1
Coverage	Max	30%	0.825252564	0.597493517	0.474919962
	norm		1	0.349877671	0
# of loc	Max	25%	16	12	11
	norm		1	0.2	0
		FOM	0.55	0.471629968	0.45

Communication system link budgets — La Paz, Mexico

Freq.	f	Ghz	input	2.15	
Xmtr Pwr	Р	W.	input	30.0000	3000
Xmtr Pwr	Р	dbW	10 log(P)	14.77	
Xmtr line loss	L	dB	input	0.50	
Xmtr Ant. Beamwidth	θ_t	deg	Eq. (13-19)	43.167	
Peak Xmt. Ant. Gain	G _{pt}	dB	Eq. (13-20)	11.60	
Xmt. Ant. Diam.	Dt	m	input	0.23	
Xmt. Ant. Pointing Error	et	deg	input	0.02	
Xmt. Ant. Pointing Loss	L _{pt}	dB	Eq. (13-21)	0.00	
Xmt Ant. Gain	Gt	dB	G _{pt} +L _{pt}	11.60	
EIRP	EIRP	dB	P+L _I +G _t	26.87	
Prop. Path Length	S	km	input	3.579E+04	
Space Loss	Ls	dB	Eq. (13-23a)	-190.16	
Prop. & Polariz. Loss	La	dB	Fig. 13-10	3.00	
Rcv. Ant. Diam.	Dr	m	input	3.70	
Peak Rcv. Ant. Gain	G _{rp}	dB	Eq. (13-18a)	35.83	
Rcv. Ant. Beamwidth	θ _r	deg	Eq. (13-19)	2.64	
Rcv. Ant. Pointing Error	e _r	deg	input	0.02	
Rcv. Ant. Pointing Loss	L _{pr}	dB	Eq. (13-21)	0.00	
Rcv. Ant. Gain	G _r	dB	G _{rp} +L _{pr}	35.83	
System Noise Temp.	Ts	к	input (using Tab	289.56	
Data Rate	R	bps	input	500000.00	
Est. E _b /N _o (1)	E _b /N _o	dB	Eq. (13-13)	12.52	
Bit Error Rate	BER		input	1.0E-05	
Rqd. E _b /N _o (2)		dB	Fig. 13-9 (BPSK,	4.50	
Implementation Loss (3)		dB	input (standard	0.00	
Margin		dB	(1)-(2)+(3)	8.02	

Margin		dB	(1)-(2)+(3)	8.13	
Implementation Loss (3)		dB	input (standard	0.00	
Rqd. E _b /N _o (2)		dB	Fig. 13-9 (BPSK,	4.50	
Bit Error Rate	BER		input	1.0E-05	
Est. E _b /N _o (1)	E _b /N _o	dB	Eq. (13-13)	12.63	
Data Rate	R	bps	input	430000.00	
System Noise Temp.	Ts	к	input (using Tab	289.56	
Rcv. Ant. Gain	Gr	dB	G _{rp} +L _{pr}	11.56	
Rcv. Ant. Pointing Loss	L _{pr}	dB	Eq. (13-21)	0.00	
Rcv. Ant. Pointing Error	er	deg	input	0.02	
Rcv. Ant. Beamwidth	θ _r	deg	Eq. (13-19)	43.17	
Peak Rcv. Ant. Gain	G _{rp}	dB	Eq. (13-18a)	11.56	
Rcv. Ant. Diam.	Dr	m	input	0.23	
Prop. & Polariz. Loss	La	dB	Fig. 13-10	3.00	
Space Loss	Ls	dB	Eq. (13-23a)	-190.16	
Prop. Path Length	S	km	input	3.579E+04	
EIRP	EIRP	dB	P+L _I +G _t	50.59	
Xmt Ant. Gain	G _t	dB	G _{pt} +L _{pt}	35.87	
Xmt. Ant. Pointing Loss	L _{pt}	dB	Eq. (13-21)	0.00	
Xmt. Ant. Pointing Error	et	deg	input	0.02	
Xmt. Ant. Diam.	D _t	m	input	3.70	
Peak Xmt. Ant. Gain	G _{nt}	dB	Eq. (13-20)	35.87	
Xmtr Ant, Beamwidth	θ	dea	Eq. (13-19)	2.640	
Xmtr line loss	L	dB	input	0.50	
Xmtr Pwr	P	dbW		14.22	2
Xmtr Pwr	P	W	input	26 4200	2

Communication system link budgets — Plana, Bulgaria

Freq.	f	Ghz	input	2.15
Xmtr Pwr	P	W.	input	30.0000
Xmtr Pwr	Р	dbW	10 log(P)	14.77
Xmtr line loss	L	dB	input	0.50
Xmtr Ant. Beamwidth	θ _t	deg	Eq. (13-19)	43.167
Peak Xmt. Ant. Gain	G _{pt}	dB	Eq. (13-20)	11.60
Xmt. Ant. Diam.	Dt	m	input	0.23
Xmt. Ant. Pointing Error	et	deg	input	0.02
Xmt. Ant. Pointing Loss	L _{pt}	dB	Eq. (13-21)	0.00
Xmt Ant. Gain	Gt	dB	G _{pt} +L _{pt}	11.60
EIRP	EIRP	dB	P+L _I +G _t	26.87
Prop. Path Length	S	km	input	3.579E+04
Space Loss	Ls	dB	Eq. (13-23a)	-190.16
Prop. & Polariz. Loss	La	dB	Fig. 13-10	3.00
Rcv. Ant. Diam.	Dr	m	input	4.50
Peak Rcv. Ant. Gain	G _{rp}	dB	Eq. (13-18a)	37.53
Rcv. Ant. Beamwidth	θ _r	deg	Eq. (13-19)	2.17
Rcv. Ant. Pointing Error	e _r	deg	input	0.02
Rcv. Ant. Pointing Loss	L _{pr}	dB	Eq. (13-21)	0.00
Rcv. Ant. Gain	G _r	dB	G _{rp} +L _{pr}	37.53
System Noise Temp.	Ts	к	input (using Tab	270.00
Data Rate	R	bps	input	500000.00
Est. E _b /N _o (1)	E _b /N _o	dB	Eq. (13-13)	14.53
Bit Error Rate	BER		input	1.0E-05
Rqd. E _b /N _o (2)		dB	Fig. 13-9 (BPSK,	4.50
Implementation Loss (3)		dB	input (standard	0.00
Margin		dB	(1)-(2)+(3)	10.03

-	6		· .	0.45
Freq.	† 	Ghz	input	2.15
Xmtr Pwr	Р	W.	input	100.0000
Xmtr Pwr	Р	dbW	10 log(P)	20.00
Xmtr line loss	L	dB	input	0.50
Xmtr Ant. Beamwidth	θ_t	deg	Eq. (13-19)	2.171
Peak Xmt. Ant. Gain	G _{pt}	dB	Eq. (13-20)	37.57
Xmt. Ant. Diam.	Dt	m	input	4.50
Xmt. Ant. Pointing Error	et	deg	input	0.02
Xmt. Ant. Pointing Loss	L _{pt}	dB	Eq. (13-21)	0.00
Xmt Ant. Gain	Gt	dB	G _{pt} +L _{pt}	37.57
EIRP	EIRP	dB	P+L _I +G _t	58.07
Prop. Path Length	S	km	input	3.579E+04
Space Loss	Ls	dB	Eq. (13-23a)	-190.16
Prop. & Polariz. Loss	L _a	dB	Fig. 13-10	3.00
Rcv. Ant. Diam.	D _r	m	input	0.23
Peak Rcv. Ant. Gain	G _{rp}	dB	Eq. (13-18a)	11.56
Rcv. Ant. Beamwidth	θ _r	deg	Eq. (13-19)	43.17
Rcv. Ant. Pointing Error	e _r	deg	input	0.02
Rcv. Ant. Pointing Loss	L _{pr}	dB	Eq. (13-21)	0.00
Rcv. Ant. Gain	G _r	dB	G _{rp} +L _{pr}	11.56
System Noise Temp.	Ts	К	input (using Tab	270.00
Data Rate	R	bps	input	4300000.00
Est. E_b/N_o (1)	E_b/N_o	dB	Eq. (13-13)	20.41
Bit Error Rate	BER		input	1.0E-05
Rqd. E _b /N _o (2)		dB	Fig. 13-9 (BPSK,	4.50
Implementation Loss (3)		dB	input (standard	0.00
Margin		dB	(1)-(2)+(3)	15.91

Communication system link budgets — Jeju, South Korea

Freq.	f	Ghz	input	2.20
Xmtr Pwr	Р	W.	input	30.0000
Xmtr Pwr	Р	dbW	10 log(P)	14.77
Xmtr line loss	L	dB	input	0.50
Xmtr Ant. Beamwidth	θ_t	deg	Eq. (13-19)	42.186
Peak Xmt. Ant. Gain	G _{pt}	dB	Eq. (13-20)	11.80
Xmt. Ant. Diam.	Dt	m	input	0.23
Xmt. Ant. Pointing Error	et	deg	input	0.02
Xmt. Ant. Pointing Loss	L _{pt}	dB	Eq. (13-21)	0.00
Xmt Ant. Gain	Gt	dB	G _{pt} +L _{pt}	11.80
EIRP	EIRP	dB	P+L _I +G _t	27.07
Prop. Path Length	S	km	input	3.579E+04
Space Loss	Ls	dB	Eq. (13-23a)	-190.36
Prop. & Polariz. Loss	La	dB	Fig. 13-10	3.00
Rcv. Ant. Diam.	Dr	m	input	3.90
Peak Rcv. Ant. Gain	G _{rp}	dB	Eq. (13-18a)	36.48
Rcv. Ant. Beamwidth	θ _r	deg	Eq. (13-19)	2.45
Rcv. Ant. Pointing Error	e _r	deg	input	0.02
Rcv. Ant. Pointing Loss	L _{pr}	dB	Eq. (13-21)	0.00
Rcv. Ant. Gain	G _r	dB	G _{rp} +L _{pr}	36.48
System Noise Temp.	Τ _s	к	input (using Tab	270.00
Data Rate	R	bps	input	500000.00
Est. E _b /N _o (1)	E _b /N _o	dB	Eq. (13-13)	13.48
Bit Error Rate	BER		input	1.0E-05
Rqd. E _b /N _o (2)		dB	Fig. 13-9 (BPSK,	4.50
Implementation Loss (3)		dB	input (standard	0.00
Margin		dB	(1)-(2)+(3)	8.98

Freq.	f	Ghz	input	2.20
Xmtr Pwr	Р	W.	input	20.0000
Xmtr Pwr	Р	dbW	10 log(P)	13.01
Xmtr line loss	L	dB	input	0.50
Xmtr Ant. Beamwidth	θ_t	deg	Eq. (13-19)	2.448
Peak Xmt. Ant. Gain	G _{pt}	dB	Eq. (13-20)	36.53
Xmt. Ant. Diam.	Dt	m	input	3.90
Xmt. Ant. Pointing Error	et	deg	input	0.02
Xmt. Ant. Pointing Loss	L _{pt}	dB	Eq. (13-21)	0.00
Xmt Ant. Gain	Gt	dB	G _{pt} +L _{pt}	36.52
EIRP	EIRP	dB	P+L _I +G _t	50.03
Prop. Path Length	S	km	input	3.579E+04
Space Loss	Ls	dB	Eq. (13-23a)	-190.36
Prop. & Polariz. Loss	L _a	dB	Fig. 13-10	3.00
Rcv. Ant. Diam.	D _r	m	input	0.23
Peak Rcv. Ant. Gain	G _{rp}	dB	Eq. (13-18a)	11.75
Rcv. Ant. Beamwidth	θ _r	deg	Eq. (13-19)	42.19
Rcv. Ant. Pointing Error	e _r	deg	input	0.02
Rcv. Ant. Pointing Loss	L _{pr}	dB	Eq. (13-21)	0.00
Rcv. Ant. Gain	G _r	dB	G _{rp} +L _{pr}	11.75
System Noise Temp.	Τ _s	К	input (using Tab	265.13
Data Rate	R	bps	input	4300000.00
Est. E _b /N _o (1)	E _b /N _o	dB	Eq. (13-13)	12.46
Bit Error Rate	BER		input	1.0E-05
Rqd. E _b /N _o (2)		dB	Fig. 13-9 (BPSK,	4.50
Implementation Loss (3)		dB	input (standard	0.00
Margin		dB	(1)-(2)+(3)	7.96

+ TRI-STRICT

Concept Trade Studies

Soft Capture							
Importance		Concept 1	Concept 2	Concept 3			
25%	Functionality	0.79	1.08	1.25			
23%	Reliability	0.58	0.97	1.01			
17%	Cost	0.22	0.62	<mark>0.6</mark> 7			
17%	Complexity	0.19	0.61	0.61			
<mark>5</mark> %	Manufacturing Difficulty	0.09	0.19	0.20			
<mark>5</mark> %	Power Consumption	0.13	0.14	0.18			
8%	Technology Readiness	0.13	0.36	0.35			
1%	Mass	0.05	0.04	0.04			
Total Averages: 2.19 4.02 4.32							

Hard Capture							
Importance		Concept 1	Concept 2	Concept 3			
25%	Functionality	0.75	0.71	1.16			
23%	Reliability	0.78	0.66	0.93			
17%	Cost	0.53	0.67	0.48			
17%	Complexity	0.44	0.69	0.36			
5%	Manufacturing Difficulty	0.17	0.21	0.14			
5%	Power Consumption	0.15	0.13	0.13			
8%	Technology Readiness	0.35	0.31	0.28			
1 %	Mass	0.03	0.04	0.04			
Total Averages:		3.21	3.43	3.53			

End Effector							
	Concept 1	Concept 2	Concept 3				
Functionality	0.75	0.79	1.16				
Reliability	0.74	0.62	0.93				
Cost	0.51	0.62	0.39				
Complexity	0.47	0.69	0.61				
Manufacturing Difficulty	0.17	0.20	0.17				
Power Consumption	0.14	0.13	0.20				
Technology Readiness	0.24	0.29	0.24				
Mass	0.04	0.03	0.05				
otal Averages:	3.05	3.38	3.76				
	En Functionality Reliability Cost Complexity Manufacturing Difficulty Power Consumption Technology Readiness Mass Total Averages:	End EffectorConcept 1Functionality0.75Reliability0.74Cost0.51Complexity0.47Manufacturing Difficulty0.17Power Consumption0.14Technology Readiness0.24Mass0.04Otal Averages:3.05	End EffectorConcept 1Concept 2Functionality0.750.79Reliability0.740.62Cost0.510.62Complexity0.470.69Manufacturing Difficulty0.170.20Power Consumption0.140.13Technology Readiness0.240.29Mass0.040.03otal Averages: 3.053.38				

8.

10.

As the release process begins, the soft capture

reconnects to the

object, so that the hard capture can begin to reverse.

Concept 1

Concept 2

