

COSMIC Capstone Challenge: Final Briefing

NEBULOR Debris Removal Mission Venus Visionaries, Penn State

Students: Joshua Custard, Zachary Kemper, Nadav Griver, Shradul Sharma, Aditi Priya-Swaminathan, and Sasidhar Devabhaktuni

Advisor: Professor Sara Lego, Penn State

Mentor: Gregory Richardson, Aerospace Corporation

April 16, 2025

Image references provided in slides notes section.

Nentrs

Team

NEBULOR Debris Removal Mission

JoshuaAditiNadavZacharyShradulSasidharCustardPriya-SwaminathanGriverKemperSharmaDevabhaktuni

Executive Summary

NEBULOR Debris Removal Mission

- Demonstrate rendezvous and orbit change
- Autonomous from

- Perform proximity operations in day or night
- Deorbit Aerocube 6B (0.5U CubeSat)
- 3. Recover & Reset

2.4 Systems Engineering Milestones

Engineering Timeline

Milestone	Date or Timespan	
Program Manager Selected	September 12, 2024	
Debris Removal Capability Defined	September 29, 2024	Pr Sc
System Requirements Defined	October 16, 2024	oje
System Requirements Review	December 15, 2024	ct ng
System Trade Studies	November-December 2024	
Subsystem Trade Studies	January-February 2025	Tra Stu
Conceptual Design Finalized	March 7, 2025	ıde dies
Concept Design Review	March 19, 2025	
Path to PDR Developed	March-April 2025	

Initial Concepts

3.1 Innovative Concepts

Net Capture

Claw Capture

Junk Annihilation Vehicle

Concept Trade Study

3.1 Innovative Concepts

	٦
U	

Criteria	Weighting	Net	Claw	Jav
Payload Cost	10%	3	2	1
Reusability	25%	1	2	3
Complexity	15%	3	1	2
Reliability	10%	2	1	3
Adaptability	10%	3	1	2
Proximity Risk	15%	2	1	3
Breakage Risk	15%	2	3	1
	100%	2.1	1.65	2.25

Criteria	Scale Ratings				
	1	2	3		
Payload Cost	High	Medium	Low		
Reusability	Low	Intermediate	High		
Complexity	Complex	Nominal	Simple		
Reliability	>5	3 to 5	<3		
Adaptability	Low	Intermediate	High		
Proximity Risk	<2 meters	2-5 meters	>5 meters		
Breakage Risk	Low Force, Safe	Inconsistent	High Force, Unsafe		

Full Mission Architecture

2.2 Storyboard of Complete Operations

JAV Payload Mission Architecture

2.2 Storyboard of Complete Operations

Proximity Operations Design

Sensor Trade Studies

Imaging

Designs Considered	Criteria		Weight	Goal	Stereo-Lidar	Radar-Thermal	Hyperspectral-Optical
Jesigns considered	Cuboid Volu	me (cm^3)	25%	MIN	2000	2000	1500
		Normalized			0	0	1
Stereoscopic Imaging	Mass (kg)		25%	MIN	6.5	15	15
& LiDAR		Normalized			1	0	0
	Peak Power	(W)	25%	MIN	17	35	30
Thermal Imaging		Normalized			1	0	0.27777778
& Padar	Range (km)		25%	MAX	50	5	50
u Kadal		Normalized			1	0	1
				Score	0.75	0	0.569444444
Optical & Hyperspectral							

Additional Sensors for extreme cases

- Long range optical camera
- Infrared optical camera for night

Sensor Ranges

Operational Usage

12

JAV Design

Sizing of the JAV for Aerocube 6B

- Orbital analysis of Aerocube 6B for necessary ΔV
- 300 km altitude for deorbit
- JAV mass determined by launch velocity
- Multiple launches with spring to achieve total debris ΔV
- Launch velocity of 29.7 m/s

JAV Design

Material Trade Studies

- Trade studies for JAV materials
- Puncturing power analysis for cross-sectional area
- Braided Kevlar tether with winch system for reeling JAV back in
- Ceramic ball bearing for alignment

Criteria	Weight	Goal	Ti-6Al-4V	W-Ni-Fe	AISI 316 Stainless Steel
CTE (µm/m-K)	20%	MIN	8.6	6	16.2
Normalized			0.745098039	1	0
Density (g/cm^3)	20%	MIN	4.43	17	8.03
Normalized			1	0	0.713603819
Hardness (HRC)	15%	MAX	36	32	35
Normalized			1	0	0.75
Yield Strength (ksi)	15%	MAX	128	75	30
Normalized			1	0.459183673	0
UTS (ksi)	15%	MAX	138	110	75
Normalized			1	0.555555556	0
Youngs Modulus (ksi)	15%	MAX	16534	29000	27992
Normalized			0	1	0.919140061
		Score	0.799019608	0.502210884	0.393091773

High Density Backing

JAV Design

15

Material Trade Studies

Criteria	Weight	Goal	Polyurethane Rubber	Silicone Rubber	EPDM Rubber
CTE (µm/m-K)	15%	MIN	200	250	275
Normalized			1	0.3333333333	0
Coefficient of Restitution	20%	MAX	0.65	0.55	0.8
Normalized			0.4	0	1
Tear Strength (kN/m)	15%	MAX	40	10	30
Normalized			1	0	0.666666667
Ductility	15%	MAX	4.5	5	3
Normalized			0.75	1	0
Glass Transition Temperature (°C)	20%	MIN	-50	-110	-50
Normalized			0	1	0
UV Degradation (%)	15%	MIN	4	1	1
Normalized			0	1	1
		Score	0.4925	0.55	0.45
Impact Surface					

2.1 Animation of Key Operating Sequence

Launching the JAV

Mass Budget

1.4 Required Elements

System	Mass	Units	System	Mass	Units
Communications	20	kg	Structure	5	kg
Propulsion	45	kg	JAV	8	kg
GNC	5.3	kg	Prox Ops Suite	7.5	kg
C&DH	1	kg	Margin	20%	%
Structure	10	kg	Payload Margin	4.1	kg
Thermal	1.5	kg	Payload Total	24.6	kg
Power	20	kg	Spacecraft Total	147.96	kg
Margin	20%	%			
Bus Margin	20.56	kg	Payload A	Mass:	
Bus Total	123.36	kg	24.6 kg o	ut of 70 kg	

Power Budget

1.4 Required Elements

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Day Min	Day Peak	Night Min	Night Peak	Units
0	26	0	26	W
0	5	0	5	W
7.4	37.6	7.4	7.4	W
10	10	10	10	W
1	1	1	1	W
25	75	25	75	W
1	1	1	1	W
44.4	155.6	44.4	125.4	W
0	30	0	10	W
0	50	0	3	W
0	80	0	13	W
20%	20%	20%	20%	%
8.88	47.12	8.88	27.68	W
53.28	282.72	53.28	166.08	W
	Day Min 0 0 7.4 10 7.4 10 10 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0	Day Min Day Peak 0 26 0 5 7.4 37.6 10 10 10 10 10 10 11 1 </th <th>Day MinDay PeakNight Min02600500507.437.67.410101010101011111125755255111111111155.644.411155.6011155.60111001110011155.644.411155.6011155.6011155.61011155.61011155.61011155.6101210010131001014155.61015151015151015151015151015151015151015151015151015151015151015151015151015151015151015151015<th>Day MinDay PeakNight MinNight Peak026026050551005055110100100100111<!--</th--></th></th>	Day MinDay PeakNight Min02600500507.437.67.410101010101011111125755255111111111155.644.411155.6011155.60111001110011155.644.411155.6011155.6011155.61011155.61011155.61011155.6101210010131001014155.61015151015151015151015151015151015151015151015151015151015151015151015151015151015151015151015 <th>Day MinDay PeakNight MinNight Peak026026050551005055110100100100111<!--</th--></th>	Day MinDay PeakNight MinNight Peak026026050551005055110100100100111 </th

Peak Power: 282.7 W in day 444 W (Dual Array)

Power Profile

Power Analysis Through Multiple Eclipses

Assuming:

- 200 W battery i/o
- Adaptive battery use
- Sinusoidal need variance

Require 213 W in day for sustained operation

Ground System

2.3 Data Handling and Comms

Swedish SSC Ground System

- o 15m Antenna: High-gain
- Cost-Effective: Lower operational costs vs. larger networks
- Operates semi-autonomously (in case user deems necessary to abort)

Ground stations of the Swedish Power Stations

Data Flow Chart

2.3 Data Handling and Comms

Comms System Requirements

22

2.3 Data Handling and Comms

- Data Rates:
 - \odot Uplink (Commands): 1 kbps .
 - Downlink (Telemetry/Sensor Data): 100 kbps.

Parameter	Uplink	Downlink
Frequency	2.2 GHz (S-band)	8.4 GHz (X-band)
Transmitter Power	250 W each (500 W total)	5 W (6.99 dBW)
Antenna Gain	24.18 dB	28.66 dB
Space Loss	-160.87 dB	-172.51 dB
Margin	1.91 dB	3.85 dB

Launch Vehicle: Rocket Lab Neutron

- Reusable medium-lift rocket with carbon composite structure
 Balances performance, cost-efficiency, and sustainability
- ESPA ring integration
 Operational Flexibility:

 Dedicated launch scheduling
 Customizable launch profiles for NEBULOR mission needs
 Retrograde orbit insertion capability

•First flight scheduled for 2025, but Electron demonstrated launch reliability

1.5 Risks

Overview and Mitigation

Risk	Mitigation
A. JAV Hit Misaligned	Pointing error budget and correction
B. LiDAR Failure	Inclusion of long-range camera
C. JAV Tether Breaking	Calibrate launch velocity low enough
D. Proximity Collision	Operate sensors below max range

Risk Matrix

1.5 Risks

		Likelihood of Failure								
		1	2	3	4	5				
	1									
aster Level	2	A 🔶		B						
	3			A						
	4	C◀━	— C	В						
Dis	5	D◀━	 D							

A. JAV Hit MisalignedB. LiDAR FailureC. JAV Tether BreakingD. Proximity Collision

3.3 Biggest Challenges Encountered

Impacts on Mission

- 1. Proximity Sensor Ranges
 - Cameras cannot see Aerocube 6B from far
 - Redesign
 - Reliance on LiDAR for range

2. JAV Launch Mechanism

- Calibrate velocity
- Unverified alignment
- Dealing with tether

3. Comms in Polar Orbit

- Need consistent link
- One station does not suffice
- Need global coverage

3.2 Technology Gap Assessment

Limitations on Current Design

Camera Observation

- Impossible to see CubeSats at extreme range
- Rely on LiDAR and ground observation
- Limits autonomy

JAV Alignment

- Launch at perfect speed
- High precision alignment
- Low friction

Thruster Efficiency

- Propellant is main item consumed
- Main limit for number of missions

For Journals

ltem	Quantity		
Abstract	186 words		
Length	16 pages (+2 pages references)		
References	44		

Written to accommodate: AIAA SciTech 2026 Orlando, FL

Payload Design

1.6 Path to PDR

Proximity Operations

- 3 Basler Ace U
- 1 Basler Ace Classic NIR
- 2 Kowa Lenses 75 mm 1"
- 2 Kowa Lens 35 mm 1"
- 1 ASC GSFL-16KS

JAV

- Ti-6Al-4V
- Silicone Rubber
- Braided Kevlar Tether
- Winch
- Silicon Nitride Ceramic Precision Balls
- LHL 2000D 01 Spring

Subsystem Design

1.6 Path to PDR

Power

- 444 W Dual Array
- 10.2 Ah Battery
- 28 V DC

GNC

- 2 Standard NST
- 4 RWP 500 Reaction Wheels
- 3 NCTR-M016 Torque Rods
- 1 CODE Computer

Thermal

- MLI Blanket
- 2 Electrical Heaters
- 6 Thermoelectric Coolers
- 2 Radiators
- Variable Conductance Heat Pipe

Subsystem Design

1.6 Path to PDR

32

Structure

- Aluminum Alloy 6061 Panels
- 3000 Series Aluminum Honeycomb Cores
- Strain Gauges
- Accelerometers

Propulsion

- 4 Aerojet Rocketdyne MR-103 G Thrusters
- Northrop Grumman 80304-1 PMD
- 40 kg Hydrazine (N2H4)

C&DH

- ISIS iOBC
- MRAM + Flash
- I2C + UART + SPI

Design Impact

Use and Uniqueness of NEBULOR and JAV

Technical Impact

- Future satellites may not need on-board deorbit systems
- Assist existing satellites if deorbit systems fail
- Possible with existing technology, but requires scaling

Innovation

- Based on harpoon
- Novel concept
- Reusable and scalable to different types of satellites

Conclusion

NEBULOR Debris Removal Mission

JAV Deorbit of Aerocube 6B

- Simple, novel, and effective
- Reduce debris and assist deorbits

Feasible for implementation by early 2030's

- Mostly off the shelf components
- Main work is with JAV

Space debris is an issue.

NEBULOR can mitigate it currently and prevent it later.

Questions?

Aerocube 6B

Backup Slides

36

Target Area

Over-Under Approach for LiDAR Failure

Backup Slides

Uplink Budget

Backup Slides

Freq.	f	Ghz	input	2.20
Xmtr Pwr	Р	W.	input	5.0000
Xmtr Pwr	Р	dbW	10 log(P)	6.99
Xmtr line loss	L	dB	input	-1.00
Xmtr Ant. Beamwidth	θt	deg	Eq. (13-19)	9.545
Peak Xmt. Ant. Gain	G _{pt}	dB	Eq. (13-20)	24.70
Xmt. Ant. Diam.	Dt	m	input	1.00
Xmt. Ant. Pointing Error	e _t	deg	input	2.00
Xmt. Ant. Pointing Loss	L _{pt}	dB	Eq. (13-21)	-0.53
Xmt Ant. Gain	Gt	dB	G _{pt} +L _{pt}	24.18
EIRP	EIRP	dB	P+LI+Gt	30.17
Prop. Path Length	S	km	input	1.200E+03
Space Loss	Ls	dB	Eq. (13-23a)	-160.87
Prop. & Polariz. Loss	La	dB	Fig. 13-10	-0.50
Rcv. Ant. Diam.	Dr	m	input	15.00
Peak Rcv. Ant. Gain	G _{rp}	dB	Eq. (13-18a)	48.18
Rcv. Ant. Beamwidth	θr	deg	Eq. (13-19)	0.64
Rcv. Ant. Pointing Error	er	deg	input	1.63
Rcv. Ant. Pointing Loss	Lpr	dB	Eq. (13-21)	-78.73
Rcv. Ant. Gain	Gr	dB	G _{rp} +L _{pr}	-30.55
System Noise Temp.	T₅	К	input (using Ta	250.00
Data Rate	R	bps	input	1000.00
Est. E _b /N _o (1)	E _b /N₀	dB	Eq. (13-13)	12.87
Bit Error Rate	BER		input	1.0E-07
Rqd. E _b /N _o (2)		dB	Fig. 13-9 (BPSK	9.60
Implementation Loss (3)		dB	input (standar	0.00
		10	(4) (0) (2)	
Margin		dB	(1)- (2) + (3)	3.2/

Downlink Budget

Backup Slides

Freq.	f	Ghz	input	8.40
Xmtr Pwr	Р	W.	input	250.0000
Xmtr Pwr	Р	dbW	10 log(P)	23.98
Xmtr line loss	L	dB	input	-1.00
Xmtr Ant. Beamwidth	θt	deg	Eq. (13-19)	2.500
Peak Xmt. Ant. Gain	G _{pt}	dB	Eq. (13-20)	36.34
Xmt. Ant. Diam.	Dt	m	input	1.00
Xmt. Ant. Pointing Error	et	deg	input	2.00
Xmt. Ant. Pointing Loss	L _{pt}	dB	Eq. (13-21)	-7.68
Xmt Ant. Gain	Gt	dB	G _{pt} +L _{pt}	28.66
EIRP	EIRP	dB	P+LI+Gt	51.64
Prop. Path Length	S	km	input	1.200E+03
Space Loss	Ls	dB	Eq. (13-23a)	-172.51
Prop. & Polariz. Loss	La	dB	Fig. 13-10	-0.50
Rcv. Ant. Diam.	Dr	m	input	15.00
Peak Rcv. Ant. Gain	G _{rp}	dB	Eq. (13-18a)	59.82
Rcv. Ant. Beamwidth	θr	deg	Eq. (13-19)	0.17
Rcv. Ant. Pointing Error	er	deg	input	0.41
Rcv. Ant. Pointing Loss	Lpr	dB	Eq. (13-21)	-72.62
Rcv. Ant. Gain	Gr	dB	G _{rp} +L _{pr}	-12.80
System Noise Temp.	Ts	К	input (using Ta	1000.00
Data Rate	R	bps	input	100000.00
Est. E _b /N _o (1)	E _b /N _o	dB	Eq. (13-13)	14.43
Bit Error Rate	BER		input	1.0E-07
Rqd. E _b /N₀ (2)		dB	Fig. 13-9 (BPSK	9.60
Implementation Loss (3)		dB	input (standar	0.00
Margin		dB	(1)-(2)+(3)	4.83

Enlarged Subsystem Diagrams

Backup Slides

Enlarged Subsystem Diagrams

Backup Slides

Enlarged Subsystem Diagrams

Backup Slides

[1] Pulliam, W., "Catcher's Mitt Final Report," DARPA, AD1016641. https://apps.dtic.mil/sti/pdfs/AD1016641.pdf. Accessed 5 April, 2024.

43

NEBULOR

[2] Kessler, D. J., and Cour-Palais, B. G., "Collision Frequency of Artificial Satellites' The Creation of a Debris Belt," *Journal of Geophysical Research*, Vol. 83, No. A6, 1978, pp. 2367-2646.

[3] Basler, "Basler ace U acA5472-5gc," https://www.baslerweb.com/en-us/shop/aca5472-5gc/. Accessed 7 April 2025.

[4] Basler, "Basler ace Classic acA2040-25gmNIR," https://www.baslerweb.com/en-us/shop/aca2040-25gmnir/. Accessed 7 April 2025.

[5] Basler, "Kowa Lens LM75HC F1.8 f75mm 1"," https://www.baslerweb.com/en-us/shop/kowa-lens-lm75hc-f1-8f75mm-1/. Accessed 7 April 2025.

[7] Advanced Scientific Concepts, "GSFL-16KS Space 3D Flash LiDAR," https://asc3d.com/gsfl_16ks/. Accessed 7 April 2025.

[8] Aerospace Specification Metals Inc., "Titanium Ti-6Al-4V (Grade 5), Annealed,"

https://asm.matweb.com/search/specificmaterial.asp?bassnum=mtp641. Accessed 8 April 2025

[9] AZO Materials, "Silicone Rubber," https://www.azom.com/properties.aspx?ArticleID=920. Accessed 8 April 2025.

[10] Dupont, "Kevlar Aramid Fiber Technical Guide,"

https://www.dupont.com/content/dam/dupont/amer/us/en/safety/public/documents/en/Kevlar_Technical_Gui de_0319.pdf. Accessed 8 April 2025.

[12] Plastic Ball Supply, "1 1/4 in. (1.25) Natural Silicone Nitride (SI3N4) Series Ceramic Precision Balls,"

https://www.plasticballsupply.com/1-1-4-in-1-25-natural-silicon-nitride-si-sub-3-sub-n-sub-4-sub-series-ceramic-precision-balls/. Accessed 8 April 2025.

[13] Lee Spring, "HEFTY Die Springs," https://www.leespring.com/compression-springs-hefty. Accessed 8 April 2025.

[14] Blue Canyon Technologies, "Nano Star Trackers," https://www.bluecanyontech.com/components/nano-startrackers/. Accessed 7 April 2025.

1 PBILOR

[15] Blue Canyon Technologies, "Reaction Wheels," https://www.bluecanyontech.com/components/reactionwheels/. Accessed 7 April 2025.

45

46

[16] NewSpace, "Magnetorquer Rods," https://www.newspacesystems.com/wp-

content/uploads/2021/10/NewSpace-Magnetorquer-Rod_20211018a.pdf. Accessed 7 April 2025.

[17] Beyond Gravity, "Core Drive Electronics," https://www.beyondgravity.com/sites/default/files/media _document/2023-11/BG-CODE.pdf. Accessed 7 April 2025.

[18] Blue Canyon Technologies, "Flexcore," https://www.bluecanyontech.com/components/flexcore/. Accessed 7 April 2025.

[19] "Thermal Control," NASA, February 2024. https://www.nasa.gov/smallsat-institute/sst-soa/thermalcontrol/. Accessed 31 January 2025.

[20] Schultz, K. P., "Loads and Structural Dynamics Requirements for Spaceflight Hardware," NASA, March 2024. Accessed 14 March, 2025.

[21] Aerojet Rocketdyne, "Monopropellant Rocket Engines," L3 Harris,

https://www.l3harris.com/sites/default/files/2023-07/AJRD-

technologies/everspinmram/. Accessed 8 April 2025.

LHX_Monopropellant_Rocket_Engines_SpecSheet_CMYK_061423_APPROVED.pdf. Accessed 8 April 2025.

[22] Northrup Grumman, "PMD Tanks Data Sheet - Sorted by Volume,"

https://www.northropgrumman.com/space/pmd-tanks-data-sheets-sorted-by-volume. Accessed 8 April 2025.

[23] ISISPACE, "On-Board Computer," https://www.isispace.nl/product/on-board-computer/. Accessed 8 April 2025.

[24] Mouser Electronics, "Everspin MRAM," https://www.mouser.com/new/everspin-

48

[25] Provantage, "Juniper Networks SRX600-2GB-CF 2GB Compact Flash Memory Module," Provantage, https://www.provantage.com/juniper-networks-srx600-2gb-cf~7NSCN0LU.htm. Accessed 8 April 2025.
[26] I2C.info, "I2C Bus Specification," I2C.info, https://i2c.info/i2c-bus-specification. Accessed 8 April 2025.

[27] Texas Instruments, "Universal Asynchronous Receiver/Transmitter (UART)," Texas Instruments, https://www.ti.com/lit/ug/sprugp1/sprugp1.pdf. Accessed 8 April 2025.
[28] Microchip Technology Inc., "Serial Peripheral Interface (SPI)," Microchip Technology Inc., https://ww1.microchip.com/downloads/en/devicedoc/spi.pdf. Accessed 8 April 2025.

